Did you pick the right camera? Part 3

Let me wrap up this three-parter with some thoughts on the media side of cameras. The switch from videotape recording to file-based recording has added complexity with not only specific file formats and codecs, but also the wrapper and container structure of the files themselves. The earliest file-based camera systems from Sony and Panasonic created a folder structure on their media cards that allowed for audio and video, clip metadata, proxies, thumbnails, and more. FAT32 formatting was adopted, so a 4GB file limit was imposed, which added the need for clip-spanning any time a recording exceeded 4GB in size.

As a result, these media cards contain a complex hierarchy of spanned files, folders, and subfolders. They often require a special plug-in for each NLE to be able to automatically interpret the files as the appropriate format of media. Some of these are automatically included with the NLE installation while others require the user to manually download and install the camera manufacturer’s software.

This became even more complicated with RED cameras, which added additional QuickTime reference files at three resolutions, so that standard media players could be used to read the REDCODE RAW files. It got even worse when digital still photo cameras added video recording capabilities, thus creating two different sets of folder paths on the card for the video and the still media. Naturally, none of these manufacturers adopted the same architecture, leaving users with a veritable Christmas tree of discovery every time they popped in one of these cards to copy/ingest/import media.

At the risk of sounding like a broken record, I am totally a fan of ARRI’s approach with the Alexa camera platform. By adopting QuickTime wrappers and the ProRes codec family (or optionally DNxHD as MXF OP1a media), Alexa recordings use a simple folder structure containing a set of uniquely-named files. These movie files include interleaved audio, video, and timecode data without the need for subfolders, sidecar files, and other extraneous information. AJA has adopted a similar approach with its KiPro products. From an editor’s point-of-view, I would much rather be handed Alexa or KiPro media files than any other camera product, simply because these are the most straight-forward to deal with in post.

I should point out that in a small percentage of productions, the incorporated metadata does have value. That’s often the case when high-end VFX are involved and information like lens data can be critical. However, in some camera systems, this is only tracked when doing camera raw recordings. Another instance is with GoPro 360-degree recordings. The front and back files and associated data files need to stay intact so that GoPro’s stitching software can properly combine the two halves into a single movie.

You can still get the benefit of the simpler Alexa-style workflow in post with other cameras if you do a bit of media management of files prior to ingesting these for the edit. My typical routine for the various Panasonic, Canon, Sony, and prosumer cameras is to rip all of the media files out of their various Clip or Private folders and move them to the root folder (usually labelled by camera roll or date). I trash all of those extra folders, because none of it is useful. (RED and GoPro 360 are the only formats to which I don’t do this.) When it’s a camera that doesn’t generate unique file names, then I will run a batch renaming application in order to generate unique file names. There are a few formats (generally drones, ‘action’ cameras, smart phones, and image sequences) that I will transcode to some flavor of ProRes. Once I’ve done this, the edit and the rest of post becomes smooth sailing.

While part of your camera buying decision should be based on its impact on post, don’t let that be a showstopper. You just have to know how to handle it and allow for the necessary prep time before starting the edit.

Click here for Part 2.

©2019 Oliver Peters

Advertisements

Did you pick the right camera? Part 2

HDR (high dynamic range) imagery and higher display resolutions start with the camera. Unfortunately that’s also where the misinformation starts. That’s because the terminology is based on displays and not on camera sensors and lenses.

Resolution

4K is pretty common, 8K products are here, and 16K may be around the corner. Resolution is commonly expressed as the horizontal dimension, but in fact, actual visual resolution is intended to be measured vertically. A resolution chart uses converging lines. The point at which you can no longer discern between the lines is the limit of the measurable resolution. That isn’t necessarily a pixel count.

The second point to mention is that camera sensors are built with photosites that only loosely equate to pixels. The hitch is that there is no 1:1 correlation between a sensor’s photosites and display pixels on a screen. This is made even more complicated by the design of a Bayer-pattern sensor that is used in most professional video cameras. In addition, not all 4K cameras look good when you analyze the image at 100%. For example, nearly all early and/or cheap drone and ‘action’ cameras appear substandard when you actually look at the image closely. The reasons include cheap plastic lenses and high compression levels.

The bottom line is that when a company like Netflix won’t accept an ARRI Alexa as a valid 4K camera for its original content guidelines – in spite of the number of blockbuster feature films captured using Alexas – you have to take it with a grain of salt. Ironically, if you shoot with an Alexa in its 4:3 mode (2880 x 2160) using anamorphic lenses (2:1 aspect squeeze), the expanded image results in a 5760 x 2160 (6K) frame. Trust me, this image looks great on a 4K display with plenty of room to crop left and right. Or, a great ‘scope image. Yes, there are anamorphic lens artifacts, but that’s part of the charm as to why creatives love to shoot that way in the first place.

Resolution is largely a non-issue for most camera owners these days. There are tons of 4K options and the only decision you need to make when shooting and editing is whether to record at 3840 or 4096 wide when working in a 4K mode.

Log, raw, and color correction

HDR is the ‘next big thing’ after resolution. Nearly every modern professional camera can shoot footage that can easily be graded into HDR imagery. That’s by recording the image as either camera raw or with a log color profile. This lets a colorist stretch the highlight information up to the peak luminance levels that HDR displays are capable of. Remember that HDR video is completely different from HDR photography, which can often be translated into very hyper-real photos. Of course, HDR will continue to be a moving target until one of the various competing standards gains sufficient traction in the consumer market.

It’s important to keep in mind that neither raw nor log is a panacea for all image issues. Both are ways to record the linear dynamic range that the camera ‘sees’ into a video colorspace. Log does this by applying a logarithmic curve to the video, which can then be selectively expanded again in post. Raw preserves the sensor data in the recording and pushes the transformation of that data to RGB video outside of the camera. Using either method, it is still possible to capture unrecoverable highlights in your recorded image. Or in some cases the highlights aren’t digitally clipped, but rather that there’s just no information in them other than bright whiteness. There is no substitute for proper lighting, exposure control, and shaping the image aesthetically through creative lighting design. In fact, if you carefully control the image, such as in a studio interview or a dramatic studio production, there’s no real reason to shoot log instead of Rec 709. Both are valid options.

I’ve graded camera raw (RED, Phantom, DJI) and log footage (Alexa, Canon, Panasonic, Sony) and it is my opinion that there isn’t that much magic to camera raw. Yes, you can have good iso/temp/tint latitude, but really not a lot more than with a log profile. In one, the sensor de-Bayering is done in post and in the other, it’s done in-camera. But if a shot was recorded underexposed, the raw image is still going to get noisy as you lift the iso and/or exposure settings. There’s no free lunch and I still stick to the mantra that you should ‘expose to the right’ during production. It’s easier to make a shot darker and get a nice image than going in the other direction.

Since NAB 2018, more camera raw options have hit the market with Apple’s ProRes RAW and Blackmagic RAW. While camera raw may not provide any new, magic capabilities, it does allow the camera manufacturer to record a less-compressed file at a lower data rate.  However, neither of these new codecs will have much impact on post workflows until there’s a critical mass of production users, since these are camera recording codecs and not mezzanine or mastering codecs. At the moment, only Final Cut Pro X properly handles ProRes RAW, yet there are no actual camera raw controls for it as you would find with RED camera raw settings. So in that case, there’s actually little benefit to raw over log, except for file size.

One popular raw codec has been Cinema DNG, which is recorded as an image sequence rather than a single movie file. Blackmagic Design cameras had used that until replaced by Blackmagic RAW.  Some drone cameras also use it. While I personally hate the workflow of dealing with image sequence files, there is one interesting aspect of cDNG. Because the format was originally developed by Adobe, processing is handled nicely by the Adobe Camera Raw module, which is designed for camera raw photographs. I’ve found that if you bring a cDNG sequence into After Effects (which uses the ACR module) as opposed to Resolve, you can actually dig more highlight detail out of the images in After Effects than in Resolve. Or at least with far less effort. Unfortunately, you are stuck making that setting decision on the first frame, as you import the sequence into After Effects.

The bottom line is that there is no way to make an educated decision about cameras without actually testing the images, the profile options, and the codecs with real-world footage. These have to be viewed on high quality displays at their native resolutions. Only then will you get an accurate reading of what that camera is capable of. The good news is that there are many excellent options on the market at various price points, so it’s hard to go wrong with any of the major brand name cameras.

Click here for Part 1.

Click here for Part 3.

©2019 Oliver Peters

Did you pick the right camera? Part 1

There are tons of great cameras and lenses on the market. While I am not a camera operator, I have been a videographer on some shoots in the past. Relevant production and camera logistical issues are not foreign to me. However, my main concern in evaluating cameras is how they impact me in post – workflow, editing, and color correction. First – biases on the table. Let me say from the start that I have had the good fortune to work on many productions shot with ARRI Alexas and that is my favorite camera system in regards to the three concerns offered in the introductory post. I love the image, adopting ProRes for recording was a brilliant move, and the workflow couldn’t be easier. But I also recognize that ARRI makes an expensive albeit robust product. It’s not for everyone. Let’s explore.

More camera choices – more considerations

If you are going to only shoot with a single camera system, then that simplifies the equation. As an editor, I long for the days when directors would only shoot single-camera. Productions were more organized and there was less footage to wade through. And most of that footage was useful – not cutting room fodder. But cameras have become cheaper and production timetables condensed, so I get it that having more than one angle for every recording can make up for this. What you will often see is one expensive ‘hero’ camera as the A-camera for a shoot and then cheaper/lighter/smaller cameras as the B and C-cameras. That can work, but the success comes down to the ingredients that the chef puts into the stew. Some cameras go well together and others don’t. That’s because all cameras use different color science.

Lenses are often forgotten in this discussion. If the various cameras being used don’t have a matched set of lenses, the images from even the exact same model cameras – set to the same settings – will not match perfectly. That’s because lenses have coloration to them, which will affect the recorded image. This is even more extreme with re-housed vintage glass. As we move into the era of HDR, it should be noted that various lens specialists are warning that images made with vintage glass – and which look great in SDR – might not deliver predictable results when that same recording is graded for HDR.

Find the right pairing

If you want the best match, use identical camera models and matched glass. But, that’s not practical or affordable for every company nor every production. The next best thing is to stay within the same brand. For example, Canon is a favorite among documentary producers. Projects using cameras from the EOS Cinema line (C300, C300 MkII, C500, C700) will end up with looks that match better in post between cameras. Generally the same holds true for Sony or Panasonic.

It’s when you start going between brands that matching looks becomes harder, because each manufacturer uses their own ‘secret sauce’ for color science. I’m currently color grading travelogue episodes recorded in Cuba with a mix of cameras. A and B-cameras were ARRI Alexa Minis, while the C and D-cameras were Panasonic EVA1s. Additionally Panasonic GH5, Sony A7SII, and various drones cameras were also used. Panasonic appears to use a similar color science as ARRI, although their log color space is not as aggressive (flat). With all cameras set to shoot with a log profile and the appropriate REC709 LUT applied to each in post (LogC and Vlog respectively) I was able to get a decent match between the ARRI and Panasonic cameras, including the GH5. Not so close with the Sony or drone cameras, however.

Likewise, I’ve graded a lot of Canon C300 MkII/C500 footage and it looks great. However, trying to match Canon to ARRI shots just doesn’t come out right. There is too much difference in how blues are rendered.

The hardest matches are when professional production cameras are married with prosumer DSLRs, such as a Sony FS5 and a Fujifilm camera. Not even close. And smartphone cameras – yikes! But as I said above, the GH5 does seem to provide passible results when used with other Panasonic cameras and in our case, the ARRIs. However, my experience there is limited, so I wouldn’t guarantee that in every case.

Unfortunately, there’s no way to really know when different brands will or won’t create a compatible A/B-camera combination until you start a production. Or rather, when you start color correcting the final. Then it’s too late. If you have the luxury of renting or borrowing cameras and doing a test first, that’s the best course of action. But as always, try to get the best you can afford. It may be better to get a more advanced camera, but only one. Then restructure your production to work with a single-camera methodology. At least then, all of your footage should be consistent.

Click here for the Introduction.

Click here for Part 2.

©2019 Oliver Peters

Did you pick the right camera? Intro

My first facility job after college at a hybrid production/post company included more than just editing. Our largest production effort was to produce, post, and dub weekly price-and-item retail TV commercials for a large, regional grocery chain. This included two to three days a week of studio production for product photography (product displays, as well as prepared food shots).

Early on, part of my shift included being the video shader for the studio camera being used. The video shader in a TV station operation is the engineering operator who makes sure the cameras are set up and adjusts video levels during the actual production. However, in our operation (as would be the case in any teleproduction facility of that time) this was a more creative role – more akin to a modern DIT (digital imaging technician) than a video engineer. It didn’t involve simply adjusting levels, but also ‘painting’ the image to get the best-looking product shots on screen. Under the direction of the agency producer and our lighting DP/camera operator, I would use both the RGB color balance controls of the camera, along with a built-in 6-way secondary color correction circuit, to make each shot look as stylistic – and the food as appetizing – as possible. Then I rolled tape and recorded the shot.

This was the mid-1970s when RCA dominated the broadcast camera market. Production and gear options where either NTSC, PAL, or film. We owned an RCA TK-45 studio camera and a TKP-45 ‘portable’ camera that was tethered to a motor home/mobile unit. This early RCA color correction system of RGB balance/level controls for lift/gamma/gain ranges, coupled with a 6-way secondary color correction circuit (sat/hue trim pots for RGBCMY) was used in RCA cameras and telecines. It became the basis for nearly all post-production color correction technology to follow. I still apply  those early fundamentals that I learned back then in my work today as a colorist.

Options = Complexity

In the intervening decades, the sheer number of camera vendors has blossomed and surpassed RCA, Philips, and the other few companies of the 1970s. Naturally, we are well past the simple concerns of NTSC or PAL; and film-based production is an oddity, not the norm. This has introduced a number of challenges:

1. More and cheaper options mean that productions using multiple cameras is a given.

2. Camera raw and log recording, along with modern color correction methods, give you seemingly infinite possibilities – often making it even harder to dial in the right look.

3. There is no agreement of file format/container standards, so file-based recording adds workflow complexity that never existed in the past.

In the next three blog posts, I will explore each of these items in greater depth.

©2019 Oliver Peters

Minimalism versus Complexity in Post

The prevailing wisdom is that Apple might preview the next Mac Pro at its annual WWDC event coming in a couple of weeks. Then the real product would likely be available by the end of the year. It will be interesting to see what that brings, given that the current Mac Pro was released in 2013 with no refreshes in between. And older Mac Pro towers (mid-2009-2012) are still competitive (with upgrades) against the current run of Apple’s Mac product line.

Many professional users are hoping for a user-upgradeable/expandable machine, like the older towers. But that hasn’t been Apple’s design and engineering trend. MacBooks, MacBook Pros, iMacs, and iMac Pros are more sealed and non-upgradeable than their predecessors. The eGPU and eGPU Pro units manufactured by Blackmagic Design are, in fact, largely an Apple design with Apple engineering specifications intended to meet power, noise and heat parameters. As such, you can’t simply pop in a newer, faster GPU chip, as you can with GPU cards and the Sonnet eGPU devices.

What do we really need?

Setting emotions aside, the real question is whether such expandability is needed any longer. Over the years, I’ve designed, built, and worked in a number of linear edit suites, mixing rooms, and other environments that required a ton of outboard gear. The earliest nonlinear suites (even up until recently) were hardware-intensive. But is any of this needed any longer? My own home rig had been based on a mid-2009 Mac Pro tower. Over the years, I’ve increased RAM, swapped out three GPU cards, changed the stock hard drives for two SSDs and two 7200 RPM media drives (RAID-0), as well as added PCIe cards for eSATA/USB3 and Blackmagic Design monitor display. While at the time, each of those moves was justified, I do have to wonder whether that investment in money would have been better spent for computer model upgrades.

Today that same Mac Pro sits turned off next to my desk. While still current with most of the apps and the OS (not Mojave, though), it can’t accept Thunderbolt peripherals and a few apps, like Pixelmator Pro, won’t install, because they require Metal 2 (only available with newer hardware). So my home suite has shifted to a mid-2014 Mac Book Pro. In doing so, I have adopted the outboard modular solution over the cards-in-the-tower approach. This is largely possible today because small, compact computers – such as laptops – have become sufficiently powerful to deal with today’s video needs.

I like this solution because I can easily shift from location to home by simply plugging in one Thunderbolt cable linked to my OWC dock. The dock connects my audio interface, a few drives, and my primary 27″ Dell display. An additional plus is that I no longer have to sync my personal files and applications between my two machines (I prefer to avoid cloud services for personal documents). I bought a Rain Design laptop stand and a TwelveSouth BookArc, so that under normal use (with one display), the MBP tucks behind the Dell in clamshell mode sitting in the BookArc cradle. When I need a dual-display configuration, I simply bring out the Rain stand and open up the MBP next to the Dell.

Admittedly, this solution isn’t for everyone. If I never needed a mobile machine, I certainly wouldn’t buy a laptop. And if I needed heavy horsepower at home, such as for intensive After Effects work or grading 4K and 8K feature films, then I would probably go for a tower – maybe even one of the Puget Systems PCs that I reviewed. But most of what I do at home is standard editing with some grading, which nearly any machine can handle these days.

Frankly, if I were to start from scratch today, instead of the laptop, tower, and an iPad, I would be tempted to go with a fully-loaded 13″ MacBook Pro. For home, add the eGPU Pro, an LG 5K display, dock, audio i/o and speakers, and drives as needed. This makes for a lighter, yet capable editor in the field. When you get home, one Thunderbolt 3 cable from the eGPU Pro into the laptop would connect the whole system, including power to the MBP.

Of course, I like simple and sleek designs – Frank Lloyd Wright, Bauhaus, Dieter Rams, Scandinavian furniture, and so on. So the Jobs/Ive approach to industrial design does appeal to me. Fortunately, for the most part, my experience with Apple products has been a positive one. However, it’s often hard to make that work in a commercial post facility. After all, that’s where horsepower is needed. But does that necessarily mean lots of gear attached to our computers?

How does this apply to a post facility?

At the day job, I usually work in a suite with a 2013 Mac Pro. Since I do a lot of the Resolve work, along with editing, that Mac Pro cables up to two computer displays plus two grading displays (calibrated and client), a CalDigit dock, a Sonnet 10GigE adapter, a Promise RAID, a TimeMachine drive, the 1GigE house internet, and an audio interface. Needless to say, the intended simplicity of the Mac Pro design has resulted in a lot of spaghetti hanging off of the back. Clearly the wrong design for this type of installation.

Conversely, the same Mac Pro, in a mixing room might be a better fit – audio interface, video display, Thunderbolt RAID. Much less spaghetti. Our other edit stations are based around iMacs/iMac Pros with few additional peripherals. Since our clients do nearly all of their review-and-approval online, the need for a large, client-friendly suite has been eliminated. One room is all we need for that, along with giving the rest of the editors a good working environment.

Even the Mac Pro room could be simplified, if it weren’t for the need to run Resolve and Media Composer on occasion. For example, Premiere Pro and Final Cut Pro X both send real video to an externally connected desktop display. If you have a reasonably accurate display, like a high-end consumer LED or OLED flat panel, then all editing and even some grading and graphic design can be handled without an additional, professional video display and hardware interface. Any room configured this way can easily be augmented with a roving 17″-34″ calibrated display and a mini-monitor device (AJA or BMD) for those ad hoc needs, like more intense grading sessions.

An interesting approach has been discussed by British editor Thomas Grove Carter, who cuts at London’s Trim, a commercial editorial shop. Since they are primarily doing the creative edit and not the finishing work, the suites can be simplified. For the most part, they only need to work with proxy or lighter-weight ProRes files. Thus, there are no heavy media requirements, as might be required with camera RAW or DPX image sequences. As he has discussed in interviews and podcasts (generally related to his use of Final Cut Pro X), Trim has been able to design edit rooms with a light hardware footprint. Often Trim’s editors are called upon to start editing on-site and then move back to Trim to continue the edit. So mobility is essential, which means the editors are often cutting with laptops. Moving from location or home to an edit suite at Trim is as simple as hooking up the laptop to a few cables. A large display for interface or video, plus fast, portable SSDs with all of the project’s media.

An installation built with this philosophy in mind can be further simplified through the use of a shared storage solution. Unlike in the past, when shared storage systems were complex, hard to install, and confusing to manage – today’s systems are designed with average users in mind. If you are moderately tech savvy, you can get a 10GigE system up and running without the need for an IT staff.

At the day-job shop, we are running two systems – QNAP and LumaForge Jellyfish Rack. We use both for different reasons, but either system by itself is good for nearly any installation – especially Premiere Pro shops. If you are principally an FCPX shop, then Jellyfish will be the better option for you. A single ethernet cable to each workstation from a central server ‘closet’ is all that’s required for a massive amount of media storage available to every editor. No more shuffling hard drives, except to load location footage. Remember that shared storage allows for a distributed workflow. You can set up a simple Mac mini bay for assistant editors and general media management without the need to commandeer an edit suite for basic tasks.

You don’t have to look far to see that the assumptions of the past few decades in computer development and post-production facility design aren’t entirely valid any longer. Client interactions have changed and computer capabilities have improved. The need for all the extra add-ons and do-dads we thought we had to have is no longer essential. It’s no longer the driver for the way in which computers have to be built today.

©2019 Oliver Peters

NAB Show 2019

This year the NAB Show seemed to emphasize its roots – the “B” in National Association of Broadcasters. Gone or barely visible were the fads of past years, such as stereoscopic 3D, 360-degree video, virtual/augmented reality, drones, etc. Not that these are gone – merely that they have refocused on the smaller segment of marketshare that reflects reality. There’s not much point in promoting stereo 3D at NAB if most of the industry goes ‘meh’.

Big exhibitors of the past, like Quantel, RED, Apple, and Autodesk, are gone from the floor. Quantel products remain as part of Grass Valley (now owned by Belden), which is the consolidation of Grass Valley Group, Quantel, Snell & Wilcox, and Philips. RED decided last year that small, camera-centric shows were better venues. Apple – well, they haven’t been on the main floor for years, but even this year, there was no off-site, Final Cut Pro X stealth presence in a hotel suite somewhere. Autodesk, which shifted to a subscription model a couple of years ago, had a demo suite in the nearby Renaissance Hotel, focusing on its hero product, Flame 2020. Smoke for Mac users – tough luck. It’s been over for years.

This was a nuts-and-bolts year, with many exhibits showing new infrastructure products. These appeal to larger customers, such as broadcasters and network facilities. Specifically the world is shifting to an IP-based infrastructure for signal routing, control, and transmission. This replaces copper and fiber wiring of the past, along with the devices (routers, video switchers, etc) at either end of the wire. Companies that might have appeared less relevant, like Grass Valley, are back in a strong sales position. Other companies, like Blackmagic Design, are being encouraged by their larger clients to fulfill those needs. And as ever, consolidation continues – this year VizRT acquired NewTek, who has been an early player in video-over-IP with their proprietary NDI protocol.

Adobe

The NAB season unofficially started with Adobe’s pre-NAB release of the CC2019 update. For editors and designers, the hallmarks of this update include a new, freeform bin window view and adjustable guides in Premiere Pro and content-aware, video fill in After Effects. These are solid additions in response to customer requests, which is something Adobe has focused on. A smaller, but no less important feature is Adobe’s ongoing effort to improve media performance on the Mac platform.

As in past years, their NAB booth was an opportunity to present these new features in-depth, as well as showcase speakers who use Adobe products for editing, sound, and design. Part of the editing team from the series Atlanta was on hand to discuss the team’s use of Premiere Pro and After Effects in their ‘editing crash pad’.

Avid

For many attendees, NAB actually kicked off on the weekend with Avid Connect, a gathering of Avid users (through the Avid Customer Association), featuring meet-and-greets, workshops, presentations, and ACA leadership committee meetings. While past product announcements at Connect have been subdued from the vantage of Media Composer editors, this year was a major surprise. Avid revealed its Media Composer 2019.5 update (scheduled for release the end of May). This came as part of a host of many updates. Most of these apply to companies that have invested in the full Avid ecosystem, including Nexis storage and Media Central asset management. While those are superb, they only apply to a small percentage of the market. Let’s not forget Avid’s huge presence in the audio world, thanks to the dominance of Pro Tools – now with Dolby ATMOS support. With the acquisition of Euphonix years back, Avid has become a significant player in the live and studio sound arena. Various examples of its S-series consoles in action were presented.

Since I focus on editing, let me discuss Media Composer a bit more. The 2019.5 refresh is the first major Media Composer overhaul in years. It started in secret last year. 2019.5 is the first iteration of the new UI, with more to be updated in coming releases. In short, the interface has been modernized and streamlined in ways to attract newer, younger users, without alienating established editors. Its panel design is similar to Adobe’s approach – i.e. interface panels can be docked, floated, stacked, or tabbed. Panels that you don’t want to see may be closed or simply slid to the side and hidden. Need to see a hidden panel again? Simply side it back open from the edge of the screen.

This isn’t just a new skin. Avid has overhauled the internal video pipeline, with 32-bit floating color and an uncompressed DNx codec. Project formats now support up to 16K. Avid is also compliant with the specs of the Netflix Post Alliance and the ACES logo program.

I found the new version very easy to use and a welcomed changed; however, it will require some adaptation if you’ve been using Media Composer for a long time. In a nod to the Media Composer heritage, the weightlifter (aka ‘liftman’) and scissors icons (for lift and extract edits) are back. Even though Media Composer 2019.5 is just in early beta testing, Avid felt good enough about it to use this version in its workshops, presentations, and stage demos.

One of the reasons to go to NAB is for the in-person presentations by top editors about their real-world experiences. No one can top Avid at this game, who can easily tap a host of Oscar, Emmy, BFTA, and Eddie award winners. The hallmark for many this year was the presentation at Avid Connect and/or at the show by the Oscar-winning picture and sound editing/mixing team for Bohemian Rhapsody. It’s hard not to gather a standing-room-only crowd when you close your talk with the Live Aid finale sequence played in kick-ass surround!

Blackmagic Design

Attendees and worldwide observers have come to expect a surprise NAB product announcement out of Grant Petty each year and he certainly didn’t disappoint this time. Before I get into that, there were quite a few products released, including for IP infrastructures, 8K production and post, and more. Blackmagic is a full spectrum video and audio manufacturer that long ago moved into the ‘big leagues’. This means that just like Avid or Grass Valley, they have to respond to pressure from large users to develop products designed around their specific workflow needs. In the BMD booth, many of those development fruits were on display, like the new Hyperdeck Extreme 8K HDR recorder and the ATEM Constellation 8K switcher.

The big reveal for editors was DaVinci Resolve 16. Blackmagic has steadily been moving into the editorial space with this all-in-one, edit/color/mix/effects/finishing application. If you have no business requirement for – or emotional attachment to – one of the other NLE brands, then Resolve (free) or Resolve Studio (paid) is an absolute no-brainer. Nothing can touch the combined power of Resolve’s feature set.

New for Resolve 16 is an additional editorial module called the Cut Page. At first blush, the design, layout, and operation are amazingly similar to Apple’s Final Cut Pro X. Blackmagic’s intent is to make a fast editor where you can start and end your project for a time-sensitive turnaround without the complexities of the Edit Page. However, it’s just another tool, so you could work entirely in the Cut Page, or start in the Cut Page and refine your timeline in the Edit Page, or skip the Cut Page all together. Resolve offers a buffet of post tools that are at your disposal.

While Resolve 16’s Cut Page does elicit a chuckle from experienced FCPX users, it offers some new twists. For example, there’s a two-level timeline view – the top section is the full-length timeline and the bottom section is the zoomed-in detail view. The intent is quick navigation without the need to constantly zoom in and out of long timelines. There’s also an automatic sync detection function. Let’s say you are cutting a two-camera show. Drop the A-camera clips onto the timeline and then go through your B-camera footage. Find a cut-away shot, mark in/out on the source, and edit. It will ‘automagically’ edit to the in-sync location on the timeline. I presume this is matched by either common sound or timecode. I’ll have to see how this works in practice, but it demos nicely. Changes to other aspects of Resolve were minor and evolutionary, except for one other notable feature. The Color Page added its own version of content-aware, video fill.

Another editorial product addition – tied to the theme of faster, more-efficient editing – was a new edit keyboard. Anyone who’s ever cut in the linear days – especially those who ran Sony BVE9000/9100 controllers – will feel very nostalgic. It’s a robust keyboard with a high-quality, integrated jog/shuttle knob. The feel is very much like controlling a tape deck in a linear system, with fast shuttle response and precise jogging. The precision is far better than any of the USB controllers, like a Contour Shuttle. Whether or not enough people will have interest in shelling out $1,025 for it awaits to be seen. It’s a great tool, but are you really faster with one, than with FCPX’s skimming and a standard keyboard and mouse?

Ironically, if you look around the Blackmagic Design booth there does seem to be a nostalgic homage to Sony hardware of the past. As I said, the edit keyboard is very close to a BVE9100 keyboard. Even the style of the control panel on the Hyperdecks – and the look of the name badges on those panels – is very much Sony’s style. As humans, this appeals to our desire for something other than the glass interfaces we’ve been dealing with for the past few years. Michael Cioni (Panavision, Light Iron) coined this as ‘tactile attraction’ in his excellent Faster Together Stage talk. It manifests itself not only in these type of control surfaces, but also in skeuomorphic designs applied to audio filter interfaces. Or in the emotion created in the viewer when a colorist adds film grain to digital footage.

Maybe Grant is right and these methods are really faster in a pressure-filled production environment. Or maybe this is simply an effort to appeal to emotion and nostalgia by Blackmagic’s designers. (Check out Grant Petty’s two-hour 2019 Product Overview for more in-depth information on Blackmagic Design’s new products.)

8K

I won’t spill a lot of words on 8K. Seems kind of silly when most delivery is HD and even SD in some places. A lot of today’s production is in 4K, but really only for future-proofing. But the industry has to sell newer and flashier items, so they’ve moved on to 8K pixel resolution (7680 x 4320). Much of this is driven by Japanese broadcast and manufacturer efforts, who are pushing into 8K. You can laugh or roll your eyes, but NAB had many examples of 8K production tools (cameras and recorders) and display systems. Of course, it’s NAB, making it hard to tell how many of these are only prototypes and not yet ready for actual production and delivery.

For now, it’s still a 4K game, with plenty of mainstream product. Not only cameras and NLEs, but items like AJA’s KiPro family. The KiPro Ultra Plus records up to four channels of HD or one channel of 4K in ProRes or DNx. The newest member of the family is the KiPro GO, which records up to four channels of HD (25Mbps H.264) onto removable USB media.

Of course, the industry never stops, so while we are working with HD and 4K, and looking at 8K, the developers are planning ahead for 16K. As I mentioned, Avid already has project presets built-in for 16K projects. Yikes!

HDR

HDR – or high dynamic range – is about where it was last year. There are basically four formats vying to become the final standard used in all production, post, and display systems. While there are several frontrunners and edicts from distributors to deliver HDR-compatible masters, there still is no clear path. In you shoot in log or camera raw with nearly any professional camera produced within the past decade, you have originated footage that is HDR-compatible. But none of the low-cost post solutions make this easy. Without the right monitoring environment, you are wasting your time. If anything, those waters are muddier this year. There were a number of HDR displays throughout the show, but there were also a few labelled as using HDR simulation. I saw a couple of those at TV Logic. Yes, they looked gorgeous and yes, they were receiving an HDR signal. I found out that the ‘simulation’ part of the description meant that the display was bright (up to 350 nits), but not bright enough to qualify as ‘true’ HDR (1,000 nits or higher).

As in past transitions, we are certainly going to have to rely on a some ‘glue’ products. For me, that’s AJA again. Through their relationship with Colorfront, AJA offers two FS-HDR products: the HDR Image Analyzer and the FS-HDR convertor. The latter was introduced last year as a real-time frame synchronizer and color convertor to go between SDR and HDR display standards.  The new Analyzer is designed to evaluate color space and gamut compliance. Just remember, no computer display can properly show you HDR, so if you need to post and delivery HDR, proper monitoring and analysis tools are essential.

Cameras

I’m not a cinematographer, but I do keep up with cameras. Nearly all of this year’s camera developments were evolutionary: new LF (large format sensor) cameras (ARRI), 4K camcorders (Sharp, JVC), a full-frame mirrorless DSLR from Nikon (with ProRes RAW recording coming in a future firmware update). Most of the developments were targeted towards live broadcast production, like sports and megachurches.  Ikegami had an 8K camera to show, but their real focus was on 4K and IP camera control.

RED, a big player in the cinema space, was only there in a smaller demo room, so you couldn’t easily compare their 8K imagery against others on the floor, but let’s not forget Sony and Panasonic. While ARRI has been a favorite, due to the ‘look’ of the Alexa, Sony (Venice) and Panasonic (Varicam and now EVA-1) are also well-respected digital cinema tools that create outstanding images. For example, Sony’s booth featured an amazing, theater-sized, LED 8K micro-pixel display system. Some of the sample material shown was of the Rio Carnival, shot with anamorphic lenses on a 6K full-frame Sony Venice camera. Simply stunning.

Finally, let’s not forget Canon’s line-up of cinema cameras, from the C100 to the C700FF. To complement these, Canon introduced their new line of Sumire Prime lenses at the show. The C300 has been a staple of documentary films, including the Oscar-winning film, Free Solo, which I had the pleasure of watching on the flight to Las Vegas. Sweaty palms the whole way. It must have looked awesome in IMAX!

(For more on RED, cameras, and lenses at NAB, check out this thread from DP Phil Holland.)

It’s a wrap

In short, NAB 2019 had plenty for everyone. This also included smaller markets, like products for education seminars. One of these that I ran across was Cinamaker. They were demonstrating a complete multi-camera set-up using four iPhones and an iPad. The iPhones are the cameras (additional iPhones can be used as isolated sound recorders) and the iPad is the ‘switcher/control room’. The set-up can be wired or wireless, but camera control, video switching, and recording is done at the iPad. This can generate the final product, or be transferred to a Mac (with the line cut and camera iso media, plus edit list) for re-editing/refinement in Final Cut Pro X. Not too shabby, given the market that Cinamaker is striving to address.

For those of us who like to use the NAB Show exhibit floor as a miniature yardstick for the industry, one of the trends to watch is what type of gear is used in the booths and press areas. Specifically, one NLE over another, or one hardware platform versus the other. On that front, I saw plenty of Premiere Pro, along with some Final Cut Pro X. Hardware-wise, it looked like Apple versus HP. Granted, PC vendors, like HP, often supply gear to use in the booths as a form of sponsorship, so take this with a grain of salt. Nevertheless, I would guess that I saw more iMac Pros than any other single computer. For PCs, it was a mix of HP Z4, Z6, and Z8 workstations. HP and AMD were partner-sponsors of Avid Connect and they demoed very compelling set-ups with these Z-series units configured with AMD Radeon cards. These are very powerful workstations for editing, grading, mixing, and graphics.

©2019 Oliver Peters

Blackmagic Design eGPU Pro

Last year Apple embraced external graphics processing units. Blackmagic Design responded with the release of its AMD-powered eGPU model. Many questioned their choice of the Radeon Pro 580 chip instead of something more powerful. That challenge has been answered with the new Blackmagic eGPU Pro. It sports the Radeon RX Vega 56 – a similar model to the one inside the base iMac Pro configuration. The two eGPU models are nearly identical in design, but in addition to more processing power, the eGPU Pro adds a DisplayPort connection that can support 5K monitors.

The eGPU Pro includes two Thunderbolt 3/USB-C ports with 85W charging capability, HMDI, DisplayPort, and four USB-A type connectors for standard USB-3.1 devices. This means you can connect multiple peripherals and displays, plus power your laptop. You’ll need a Thunderbolt 3 connection from the computer and then either eGPU model becomes plug-and-play with Mojave (macOS 10.14) or later.

Setting up the eGPU Pro

With Mojave, most current creative apps, like Final Cut Pro X, Premiere Pro, Resolve, etc. offer a preference selection to always use the eGPU (when connected) from the application’s Get Info panel. This is an “either/or” choice. The application does not combine the power of both GPUs for maximum performance. When you pull up the Activity Monitor, you can easily see that the internal GPU is loafing while the eGPU Pro does the heavy lifting during tasks such as rendering. External GPUs benefit Macs with low-end, built-in GPUs, like the 13″ MacBook Pro or the Mac mini. A Blackmagic eGPU or eGPU Pro wouldn’t provide an edge to the render times of an iMac Pro, for example. It wouldn’t be worth the investment, unless you need one to connect additional high-resolution displays.

Users who are unfamiliar with external GPUs assume that the advantage is in faster export and render times, but that’s only part of the story. Not every function of an application uses the GPU, so many factors determine rendering. External GPU technology is very much about real-time image output. An eGPU will allow more connected displays of higher resolutions than an underpowered Mac would normally support on its own. The eGPU will also improve real-time playback of effects-heavy timelines. So yes, editors will get faster exports, but they will also enjoy a more fluid editing experience.

Extending the power of the Mac mini

In my Mac mini review, I concluded that a fully-loaded configuration made for a very capable editing computer. However, if you tend to use a number of effects that lean on GPU power, you will see an impact on real-time playback. For example, with the standard Intel GPU, I could add color correction, gaussian blur, and a title, and playback was generally fine with a fast drive. But, when I added a mask to the blur, it quickly dropped frames during playback. Once I connected the eGPU Pro to this same Mac Mini, such timelines played fluidly and, in fact, more effects could be layered onto clips. As in my other tests, Final Cut Pro X performed the best, but Premiere Pro and Resolve also performed solidly.

For basic rendering, I tested the same sequence that I used in the Mac mini review. This is a 9:15-long 1080p timeline made up of 4K source clips in a variety of codecs, plus scaling and color correction. I exported ProRes and H.264 master files from FCPX, Premiere Pro, and Resolve. With the eGPU Pro, times were cut in the range of 12% (FCPX) to 54% (Premiere). An inherently fast renderer, like Final Cut, gained the least by percentage, as it already exhibited the fastest times overall. Premiere Pro saw the greatest gain from the addition of the eGPU Pro. This is a major improvement over last year when Premiere didn’t seem to take much advantage of the eGPU. Presumably both Apple and Adobe have optimized performance when an eGPU is present.

Most taxing tests

A timeline export test is real-world but may or may not tax a GPU. So, I set up a specific render test for that purpose. I created a :60 6K timeline (5760×3240) composed of a nine-screen composite of 4K clips scaled into nine 1920×1080 sections. Premiere Pro would barely play this at even 1/16th resolution using only the Intel. With the eGPU Pro, it generally played at 1/2 resolution. This was exported to a final 1080 ProRes file. During my base test (without the eGPU connected) Premiere Pro took over 31 minutes with “maximum quality” selected. A standard quality export was about eight minutes, while Final Cut Pro X took five minutes. Once I re-connected the eGPU Pro, the same timelines exported in 3:20 under all three test scenarios. That’s a whopping 90% reduction in time for the most taxing condition! One last GPU-centric test was the BruceX test, which has been devised for Final Cut. The result without the eGPU was :58, but an impressive :16 when the eGPU Pro was used.

As you can see, effects-heavy work will benefit from the eGPU Pro, not only in faster renders and exports, but also improved real-time editing. This is also true of Resolve timelines with many nodes and in other graphics applications, like Pixelmater Pro. The 2018 Mac mini is a capable mid-range system when you purchase it with the advanced options. Nevertheless, users who need that extra grunt will definitely see a boost from the addition of a Blackmagic eGPU Pro.

Originally written for RedShark News.

©2019 Oliver Peters