Did you pick the right camera? Part 3

Let me wrap up this three-parter with some thoughts on the media side of cameras. The switch from videotape recording to file-based recording has added complexity with not only specific file formats and codecs, but also the wrapper and container structure of the files themselves. The earliest file-based camera systems from Sony and Panasonic created a folder structure on their media cards that allowed for audio and video, clip metadata, proxies, thumbnails, and more. FAT32 formatting was adopted, so a 4GB file limit was imposed, which added the need for clip-spanning any time a recording exceeded 4GB in size.

As a result, these media cards contain a complex hierarchy of spanned files, folders, and subfolders. They often require a special plug-in for each NLE to be able to automatically interpret the files as the appropriate format of media. Some of these are automatically included with the NLE installation while others require the user to manually download and install the camera manufacturer’s software.

This became even more complicated with RED cameras, which added additional QuickTime reference files at three resolutions, so that standard media players could be used to read the REDCODE RAW files. It got even worse when digital still photo cameras added video recording capabilities, thus creating two different sets of folder paths on the card for the video and the still media. Naturally, none of these manufacturers adopted the same architecture, leaving users with a veritable Christmas tree of discovery every time they popped in one of these cards to copy/ingest/import media.

At the risk of sounding like a broken record, I am totally a fan of ARRI’s approach with the Alexa camera platform. By adopting QuickTime wrappers and the ProRes codec family (or optionally DNxHD as MXF OP1a media), Alexa recordings use a simple folder structure containing a set of uniquely-named files. These movie files include interleaved audio, video, and timecode data without the need for subfolders, sidecar files, and other extraneous information. AJA has adopted a similar approach with its KiPro products. From an editor’s point-of-view, I would much rather be handed Alexa or KiPro media files than any other camera product, simply because these are the most straight-forward to deal with in post.

I should point out that in a small percentage of productions, the incorporated metadata does have value. That’s often the case when high-end VFX are involved and information like lens data can be critical. However, in some camera systems, this is only tracked when doing camera raw recordings. Another instance is with GoPro 360-degree recordings. The front and back files and associated data files need to stay intact so that GoPro’s stitching software can properly combine the two halves into a single movie.

You can still get the benefit of the simpler Alexa-style workflow in post with other cameras if you do a bit of media management of files prior to ingesting these for the edit. My typical routine for the various Panasonic, Canon, Sony, and prosumer cameras is to rip all of the media files out of their various Clip or Private folders and move them to the root folder (usually labelled by camera roll or date). I trash all of those extra folders, because none of it is useful. (RED and GoPro 360 are the only formats to which I don’t do this.) When it’s a camera that doesn’t generate unique file names, then I will run a batch renaming application in order to generate unique file names. There are a few formats (generally drones, ‘action’ cameras, smart phones, and image sequences) that I will transcode to some flavor of ProRes. Once I’ve done this, the edit and the rest of post becomes smooth sailing.

While part of your camera buying decision should be based on its impact on post, don’t let that be a showstopper. You just have to know how to handle it and allow for the necessary prep time before starting the edit.

Click here for Part 2.

©2019 Oliver Peters

Advertisements

Did you pick the right camera? Part 2

HDR (high dynamic range) imagery and higher display resolutions start with the camera. Unfortunately that’s also where the misinformation starts. That’s because the terminology is based on displays and not on camera sensors and lenses.

Resolution

4K is pretty common, 8K products are here, and 16K may be around the corner. Resolution is commonly expressed as the horizontal dimension, but in fact, actual visual resolution is intended to be measured vertically. A resolution chart uses converging lines. The point at which you can no longer discern between the lines is the limit of the measurable resolution. That isn’t necessarily a pixel count.

The second point to mention is that camera sensors are built with photosites that only loosely equate to pixels. The hitch is that there is no 1:1 correlation between a sensor’s photosites and display pixels on a screen. This is made even more complicated by the design of a Bayer-pattern sensor that is used in most professional video cameras. In addition, not all 4K cameras look good when you analyze the image at 100%. For example, nearly all early and/or cheap drone and ‘action’ cameras appear substandard when you actually look at the image closely. The reasons include cheap plastic lenses and high compression levels.

The bottom line is that when a company like Netflix won’t accept an ARRI Alexa as a valid 4K camera for its original content guidelines – in spite of the number of blockbuster feature films captured using Alexas – you have to take it with a grain of salt. Ironically, if you shoot with an Alexa in its 4:3 mode (2880 x 2160) using anamorphic lenses (2:1 aspect squeeze), the expanded image results in a 5760 x 2160 (6K) frame. Trust me, this image looks great on a 4K display with plenty of room to crop left and right. Or, a great ‘scope image. Yes, there are anamorphic lens artifacts, but that’s part of the charm as to why creatives love to shoot that way in the first place.

Resolution is largely a non-issue for most camera owners these days. There are tons of 4K options and the only decision you need to make when shooting and editing is whether to record at 3840 or 4096 wide when working in a 4K mode.

Log, raw, and color correction

HDR is the ‘next big thing’ after resolution. Nearly every modern professional camera can shoot footage that can easily be graded into HDR imagery. That’s by recording the image as either camera raw or with a log color profile. This lets a colorist stretch the highlight information up to the peak luminance levels that HDR displays are capable of. Remember that HDR video is completely different from HDR photography, which can often be translated into very hyper-real photos. Of course, HDR will continue to be a moving target until one of the various competing standards gains sufficient traction in the consumer market.

It’s important to keep in mind that neither raw nor log is a panacea for all image issues. Both are ways to record the linear dynamic range that the camera ‘sees’ into a video colorspace. Log does this by applying a logarithmic curve to the video, which can then be selectively expanded again in post. Raw preserves the sensor data in the recording and pushes the transformation of that data to RGB video outside of the camera. Using either method, it is still possible to capture unrecoverable highlights in your recorded image. Or in some cases the highlights aren’t digitally clipped, but rather that there’s just no information in them other than bright whiteness. There is no substitute for proper lighting, exposure control, and shaping the image aesthetically through creative lighting design. In fact, if you carefully control the image, such as in a studio interview or a dramatic studio production, there’s no real reason to shoot log instead of Rec 709. Both are valid options.

I’ve graded camera raw (RED, Phantom, DJI) and log footage (Alexa, Canon, Panasonic, Sony) and it is my opinion that there isn’t that much magic to camera raw. Yes, you can have good iso/temp/tint latitude, but really not a lot more than with a log profile. In one, the sensor de-Bayering is done in post and in the other, it’s done in-camera. But if a shot was recorded underexposed, the raw image is still going to get noisy as you lift the iso and/or exposure settings. There’s no free lunch and I still stick to the mantra that you should ‘expose to the right’ during production. It’s easier to make a shot darker and get a nice image than going in the other direction.

Since NAB 2018, more camera raw options have hit the market with Apple’s ProRes RAW and Blackmagic RAW. While camera raw may not provide any new, magic capabilities, it does allow the camera manufacturer to record a less-compressed file at a lower data rate.  However, neither of these new codecs will have much impact on post workflows until there’s a critical mass of production users, since these are camera recording codecs and not mezzanine or mastering codecs. At the moment, only Final Cut Pro X properly handles ProRes RAW, yet there are no actual camera raw controls for it as you would find with RED camera raw settings. So in that case, there’s actually little benefit to raw over log, except for file size.

One popular raw codec has been Cinema DNG, which is recorded as an image sequence rather than a single movie file. Blackmagic Design cameras had used that until replaced by Blackmagic RAW.  Some drone cameras also use it. While I personally hate the workflow of dealing with image sequence files, there is one interesting aspect of cDNG. Because the format was originally developed by Adobe, processing is handled nicely by the Adobe Camera Raw module, which is designed for camera raw photographs. I’ve found that if you bring a cDNG sequence into After Effects (which uses the ACR module) as opposed to Resolve, you can actually dig more highlight detail out of the images in After Effects than in Resolve. Or at least with far less effort. Unfortunately, you are stuck making that setting decision on the first frame, as you import the sequence into After Effects.

The bottom line is that there is no way to make an educated decision about cameras without actually testing the images, the profile options, and the codecs with real-world footage. These have to be viewed on high quality displays at their native resolutions. Only then will you get an accurate reading of what that camera is capable of. The good news is that there are many excellent options on the market at various price points, so it’s hard to go wrong with any of the major brand name cameras.

Click here for Part 1.

Click here for Part 3.

©2019 Oliver Peters

Did you pick the right camera? Part 1

There are tons of great cameras and lenses on the market. While I am not a camera operator, I have been a videographer on some shoots in the past. Relevant production and camera logistical issues are not foreign to me. However, my main concern in evaluating cameras is how they impact me in post – workflow, editing, and color correction. First – biases on the table. Let me say from the start that I have had the good fortune to work on many productions shot with ARRI Alexas and that is my favorite camera system in regards to the three concerns offered in the introductory post. I love the image, adopting ProRes for recording was a brilliant move, and the workflow couldn’t be easier. But I also recognize that ARRI makes an expensive albeit robust product. It’s not for everyone. Let’s explore.

More camera choices – more considerations

If you are going to only shoot with a single camera system, then that simplifies the equation. As an editor, I long for the days when directors would only shoot single-camera. Productions were more organized and there was less footage to wade through. And most of that footage was useful – not cutting room fodder. But cameras have become cheaper and production timetables condensed, so I get it that having more than one angle for every recording can make up for this. What you will often see is one expensive ‘hero’ camera as the A-camera for a shoot and then cheaper/lighter/smaller cameras as the B and C-cameras. That can work, but the success comes down to the ingredients that the chef puts into the stew. Some cameras go well together and others don’t. That’s because all cameras use different color science.

Lenses are often forgotten in this discussion. If the various cameras being used don’t have a matched set of lenses, the images from even the exact same model cameras – set to the same settings – will not match perfectly. That’s because lenses have coloration to them, which will affect the recorded image. This is even more extreme with re-housed vintage glass. As we move into the era of HDR, it should be noted that various lens specialists are warning that images made with vintage glass – and which look great in SDR – might not deliver predictable results when that same recording is graded for HDR.

Find the right pairing

If you want the best match, use identical camera models and matched glass. But, that’s not practical or affordable for every company nor every production. The next best thing is to stay within the same brand. For example, Canon is a favorite among documentary producers. Projects using cameras from the EOS Cinema line (C300, C300 MkII, C500, C700) will end up with looks that match better in post between cameras. Generally the same holds true for Sony or Panasonic.

It’s when you start going between brands that matching looks becomes harder, because each manufacturer uses their own ‘secret sauce’ for color science. I’m currently color grading travelogue episodes recorded in Cuba with a mix of cameras. A and B-cameras were ARRI Alexa Minis, while the C and D-cameras were Panasonic EVA1s. Additionally Panasonic GH5, Sony A7SII, and various drones cameras were also used. Panasonic appears to use a similar color science as ARRI, although their log color space is not as aggressive (flat). With all cameras set to shoot with a log profile and the appropriate REC709 LUT applied to each in post (LogC and Vlog respectively) I was able to get a decent match between the ARRI and Panasonic cameras, including the GH5. Not so close with the Sony or drone cameras, however.

Likewise, I’ve graded a lot of Canon C300 MkII/C500 footage and it looks great. However, trying to match Canon to ARRI shots just doesn’t come out right. There is too much difference in how blues are rendered.

The hardest matches are when professional production cameras are married with prosumer DSLRs, such as a Sony FS5 and a Fujifilm camera. Not even close. And smartphone cameras – yikes! But as I said above, the GH5 does seem to provide passible results when used with other Panasonic cameras and in our case, the ARRIs. However, my experience there is limited, so I wouldn’t guarantee that in every case.

Unfortunately, there’s no way to really know when different brands will or won’t create a compatible A/B-camera combination until you start a production. Or rather, when you start color correcting the final. Then it’s too late. If you have the luxury of renting or borrowing cameras and doing a test first, that’s the best course of action. But as always, try to get the best you can afford. It may be better to get a more advanced camera, but only one. Then restructure your production to work with a single-camera methodology. At least then, all of your footage should be consistent.

Click here for the Introduction.

Click here for Part 2.

©2019 Oliver Peters

Camerama 2015

df0715_main

The design of a modern digital video camera comes down to the physics of the sensor and shutter, the software to control colorimetry and smart industrial design to optimize the ergonomics for the operator. Couple that with a powerful internal processor and recording mechanism and you are on your way. Although not exactly easy, these traits no longer require skills that are limited to the traditional camera manufacturers. As a result, innovative new cameras have been popping up from many unlikely sources.

df0715_cionThe newest of these is AJA, which delivered the biggest surprise of NAB 2014 in the form of their CION 4K/UltraHD/2K/HD digital camera. Capitalizing on a trend started by ARRI, the CION records directly to the edit-ready Apple ProRes format, using AJA Pak solid state media. The CION features a 4K APS-C sized CMOS sensor with a global shutter to eliminate rolling-shutter artifacts. AJA claims 12 stops of dynamic range and uses a PL mount for lenses designed for Super 35mm. The CION is also capable of outputting AJA camera raw at frame rates up to 120fps.  It can send out 4K or UHD video from its four 3G-SDI outputs to the AJA Corvid Ultra for replay and center extraction during live events.

df0715_alexaThe darling of the film and high-end television world continues to be ARRI Digital with its line of ALEXA cameras. These now include the Classic, XT, XT Plus, XT M and XT Studio configurations. They vary based on features and sensor size. The Classic cameras have a maximum active sensor photosite size of 2880 x 2160, while the XT models go as high as 3414 x 2198. Another difference is that the XT models allow in-camera recording of ARRIRAW media. The ALEXA introduced ProRes recording and all current XT models permit Apple ProRes and Avid DNxHD recording.

df0715_amiraThe ALEXA has been joined by the newer, lighter AMIRA, which is targeted at documentary-style shooting with smaller crews. The AMIRA is tiered into three versions, with the Premium model offering 2K recording in all ProRes flavors at up to 200fps. ARRI has added 4K capabilities to both the ALEXA and AMIRA line by utilizing the full sensor size using their Open Gate mode. In the Amira, this 3.4K image is internally scaled by a factor of 1.2 to record a UHD file at up to 60fps to its in-camera CFast 2.0 cards. The ALEXA uses a similar technique, but only records the 3.4K signal in-camera, with scaling to be done later in post.

df0715_alexa65To leapfrog the competition, ARRI also introduced its ALEXA 65, which is available through the ARRI Rental division. This camera is a scaled up version of the ALEXA XT and uses a sensor that is larger than a 5-perf 65mm film frame. That’s an Open Gate resolution of 6560 x 3102 photosites. The signal is captured as uncompressed ARRIRAW. Currently the media is recorded on ALEXA XR Capture drives at a maximum frame rate of 27fps.

df0715_bmd_cc_rear_lBlackmagic Design had been the most unexpected camera developer a few years ago, but has since grown its DSLR-style camera line into four models: Studio, Production 4K, Cinema and Pocket Cinema. These vary in cosmetic style and size, which formats they are able to record and the lens mounts they use. df0715_bmdpocketThe Pocket Cinema Camera is essentially a digital equivalent of a Super 16mm film camera, but in a point-and-shoot, small camera form factor. The Cinema and Production 4K cameras feature a larger, Super 35mm sensor. Each of these three incorporate ProRes and/or CinemaDNG raw recording. The Studio Camera is designed as a live production camera. It features a larger viewfinder, housing, accessories and connections designed to integrate this camera into a television studio or remote truck environment. There is an HD and a 4K version.

df0715_ursaThe biggest Blackmagic news was the introduction of the URSA. Compared to the smaller form factors of the other Blackmagic Design cameras, the URSA is literally a “bear” of a camera. It is a rugged 4K camera built around the idea of user-interchangeable parts. You can get EF, PL and broadcast lens mounts, but you can also operate it without a lens as a standalone recording device. It’s designed for UltraHD (3840 x 2160), but can record up to 4,000 pixels wide in raw. Recording formats include CinemaDNG raw (uncompressed and 3:1 compressed), as well as Apple ProRes, with speeds up to 80fps. There are two large displays on both sides of the camera, which can be used for monitoring and operating controls. It has a 10” fold-out viewfinder and a built-in liquid cooling system. As part of the modular design, users can replace mounts and even the sensor in the field.

df0715_c300Canon was the most successful company out of the gate when the industry adopted HD-video-capable DSLR cameras as serious production tools. Canon has expanded these offerings with its Cinema EOS line of small production cameras, including the C100, C100 Mark II, C300 and C500, which all share a similar form factor. Also included in this line-up is the EOS-1D C, a 4K camera that retains its DSLR body. The C300 and C500 camera both use a Super 35mm sized sensor and come in EF or PL mount configurations. The C300 is limited to HD recording using the Canon XF codec. The C500 adds 2K and 4K (4096 cinema and 3840 UHD) recording capabilities, but this signal must be externally recorded using a device like the Convergent Design Odyssey 7Q+. HD signals are recorded internally as Canon XF, just like the C300. The Canon EOS C100 and C100 Mark II share the design of the C300, except that they record to AVCHD instead of Canon XF. In addition, the Mark II can also record MP4 files. Both C100 models record to SD cards, whereas the C300/C500 cameras use CF cards. The Mark II features improved ergonomics over the base C100 model.

df0715_5dThe Canon EOS-1D C is included because it can record 4K video. Since it is also a still photography camera, the sensor is an 18MP full-frame sensor. When recording 4K video, it uses a Motion JPEG codec, but for HD, can also use the AVCHD codec. The big plus over the C500 is that the 1D C records 4K onboard to CF cards, so is better suited to hand-held work. The DSLR cameras that started the craze for Canon continue to be popular, including the EOS 5D Mark III and the new EOS 7D Mark II. Plus the consumer-oriented Rebel versions. All are outstanding still cameras. The 5D features a 22.3MP CMOS sensor and records HD video as H.264 MOV files to onboard CF cards. Thanks to the sensor size, the 5D is still popular for videographers who want extremely shallow depth-of-field shots from a handheld camera.

df0715_d16Digital Bolex has become a Kickstarter success story. These out-of-the-box thinkers coupled the magic of a venerable name from the film era with innovative design and marketing to produce the D16 Cinema Camera. Its form factor mimics older, smaller, handheld film camera designs, making it ideal for run-and-gun documentary production. It features a Super 16mm sized CCD sensor with a global shutter and claims 12 stops of dynamic range. The D16 records in 12-bit CinemaDNG raw to internal SSDs, but media is offloaded to CF cards or via USB3.0 for media interchange. The camera comes with a C-mount, but EF, MFT and PL lens mounts are available. Currently the resolutions include 2048 x 1152 (“S16mm mode”), 2048 x 1080 (“S16 EU”) and HD (“16mm mode”). The D16 records 23.98, 24 and 25fps frame rates, but variable rates up to 32fps in the S16mm mode are coming soon. To expand on the camera’s attractiveness, Digital Bolex also offers a line of accessories, including Kish/Bolex 16mm prime lens sets. These fixed aperture F4 lenses are C-mount for native use with the D16 camera. Digital Bolex also offers the D16 in an MFT mount configuration and in a monochrome version.

df0715_hero4The sheer versatility and disposable quality of GoPro cameras has made the HERO line a staple of many productions. The company continues to advance this product with the HERO4 Black and Silver models as their latest. These are both 4K cameras and have similar features, but if you want full video frame rates in 4K, then the HERO4 Black is the correct model. It will record up to 30fps in 4K, 50fps in 2.7K and 120fps in 1080p. As a photo camera, it uses a 12MP sensor and is capable of 30 frames a one second in burst mode and time-lapse intervals from .5 to 60 seconds. The video signal is recorded as an H264 file with a high-quality mode that’s up 60 Mb/s. MicrosSD card media is used. HERO cameras have been popular for extreme point-of-video shots and its waterproof housing is good for 40 meters. This new HERO4 series offers more manual control, new night time and low-light settings, and improved audio recording.

df0715_d810Nikon actually beat Canon to market with HD-capable DSLRs, but lost the momentum when Canon capitalized on the popularity of the 5D. Nevertheless, Nikon has its share of supportive videographers, thanks in part to the quantity of Nikon lenses in general use. The Nikon range of high-quality still photo and video-enabled cameras fall under Nikon’s D-series product family. The Nikon D800/800E camera has been updated to the D810. This is the camera of most interest to professional videographers. It’s a 36.3MP still photo camera that can also record 1920 x 1080 video in 24/30p modes internally and 60p externally. It can also record up to 9,999 images in a time-lapse sequence. A big plus for many is its optical viewfinder. It records H.264/MPEG-4 media to onboard CF cards. Other Nikon video cameras include the D4S, D610, D7100, D5300 and D3300.

df0715_varicamPanasonic used to own the commercial HD camera market with the original VariCam HD camera. They’ve now reimagined that brand in the new VariCam 35 and VariCam HS versions. The new VariCam uses a modular configuration with each of these two cameras using the same docking electronics back. In fact, a costumer can purchase one camera head and back and then only need to purchase the other head, thus owning both the 35 and the HS models for less than the total cost of two cameras. The VariCam 35 is a 4K camera with wide color gamut and wide dynamic range (14+ stops are claimed). It features a PL lens mount, records from 1 to 120fps and supports dual-recording. For example, you can simultaneously record a 4K log AVC-Intra master to the main recorder (expressP2 card) and 2K/HD Rec 709 AVC-Intra/AVC-Proxy/Apple ProRes to a second internal recorder (microP2 card) for offline editing. VariCam V-Raw camera raw media can be recorded to a separate Codex V-RAW recorder, which can be piggybacked onto the camera. The Panasonic VariCam HS is a 2/3” 3MOS broadcast/EFP camera capable of up to 240fps of continuous recording.  It supports the same dual-recording options as the VariCam 35 using AVC-Intra and/or Apple ProRes codecs, but is limited to HD recordings.

df0715_gh4With interest in DSLRs still in full swing, many users’ interest in Panasonic veers to the Lumix GH4. This camera records 4K cinema (4096) and 4K UHD (3840) sized images, as well as HD. It uses SD memory cards to record in MOV, MP4 or AVCHD formats. It features variable frame rates (up to 96fps), HDMI monitoring and a professional 4K audio/video interface unit. The latter is a dock the fits to the bottom of the camera. It includes XLR audio and SDI video connections with embedded audio and timecode.

RED Digital Cinema started the push for 4K cameras and camera raw video recording with the original RED One. That camera is now only available in refurbished models, as RED has advanced the technology with the EPIC and SCARLET. Both are modular camera designs that are offered with either the Dragon or the Mysterium-X sensor. The Dragon is a 6K, 19MP sensor with 16.5+ stops of claimed dynamic range. The Mysterium-X is a 5K, 14MP sensor that claims 13.5 stops, but up to 18 stops using RED’s HDRx (high dynamic range) technology. df0715_epicThe basic difference between the EPIC and the SCARLET, other than cost, is that the EPIC features more advanced internal processing and this computing power enables a wider range of features. For example, the EPIC can record up to 300fps at 2K, while the SCARLET tops out at 120fps at 1K. The EPIC is also sold in two configurations: EPIC-M, which is hand-assembled using machined parts, and the EPIC-X, which is a production-run camera. With the interest in 4K live production, RED has introduced its 4K Broadcast Module. Coupled with an EPIC camera, you could record a 6K file for archive, while simultaneously feeding a 4K and/or HD live signal for broadcast. RED is selling studio broadcast configurations complete with camera, modules and support accessories as broadcast-ready packages.

df0715_f65Sony has been quickly gaining ground in the 4K market. Its CineAlta line includes the F65, PMW-F55, PMW-F5, PMW-F3, NEX-FS700R and NEX-FS100. All are HD-capable and use Super 35mm sized image sensors, with the lower-end FS700R able to record 4K raw to an external recorder. At the highest end is the 20MP F65, which is designed for feature film production.df0715_f55 The camera is capable of 8K raw recording, as well as 4K, 2K and HD variations. Recordings must be made on a separate SR-R4 SR MASTER field recorder. For most users, the F55 is going to be the high-end camera for them if they purchase from Sony. It permits onboard recording in four formats: MPEG-2 HD, XAVC HD, SR File and XAVC 4K. With an external recorder, 4K and 2K raw recording is also available. High speeds up to 240fps (2K raw with the optional, external recorder) are possible. The F5 is the F55’s smaller sibling. It’s designed for onboard HD recording (MPEG-2 HD, XAVC HD, SR File). 4K and 2K recordings require an external recorder.

df0715_fs7The Sony camera that has caught everyone’s attention is the PXW-FS7. It’s designed as a lightweight, documentary-style camera with a form factor and rig that’s reminiscent of an Aaton 16mm film camera. It uses a Super 35mm sized sensor and delivers 4K resolution using onboard XAVC recording to XQD memory cards. XDCAM MPEG-2 HD recording (now) and ProRes (with a future upgrade) will also be possible. Also raw will be possible to an outboard recorder.

df0715_a7sSony has also not been left behind by the DSLR revolution. The A7s is an APS-C, full frame, mirrorless 12.2MP camera that’s optimized for 4K and low light. It can record up to 1080p/60 (or 720p/120) onboard (50Mbps XAVC S) or feed uncompressed HD and/or 4K (UHD) out via its HDMI port. It will record onboard audio and sports such pro features as Sony’s S-Log2 gamma profile.

With any overview, there’s plenty that we can’t cover. If you are in the market for a camera, remember many of these companies offer a slew of other cameras ranging from consumer to ENG/EFP offerings. I’ve only touched on the highlights. Plus there are others, like Grass Valley, Hitachi, Samsung and Ikegami that make great products in use around the world every day. Finally, with all the video-enabled smart phones and tablets, don’t be surprised if you are recording your next production with an iPhone or iPad!

Originally written for Digital Video magazine / CreativePlanetNetwork.

©2015 Oliver Peters

Why 4K

Ever since the launch of RED Digital Cinema, 4K imagery has become an industry buzzword. The concept stems from 35mm film post, where the digital scan of a film frame at 4K is considered full resolution and a 2K scan to be half resolution. In the proper used of the term, 4K only refers to frame dimensions, although it is frequently and incorrectly used as an expression of visual resolution or perceived sharpness. There is no single 4K size, since it varies with how it is used and the related aspect ratio. For example, full aperture film 4K is 4096 x 3112 pixels, while academy aperture 4K is 3656 x 2664. The RED One and EPIC use several different frame sizes. Most displays use the Quad HD standard of 3840 x 2160 (a multiple of 1920 x 1080) while the Digital Cinema Projection standard is 4096 x 2160 for 4K and 2048 x 1080 for 2K. The DCP standard is a “container” specification, which means the 2.40:1 or 1.85:1 film aspects are fit within these dimensions and the difference padded with black pixels.

Thanks to the latest interest in stereo 3D films, 4K-capable projection systems have been installed in many theaters. The same system that can display two full bandwidth 2K signals can also be used to project a single 4K image. Even YouTube offers some 4K content, so larger-than-HD production, post and distribution has quickly gone from the lab to reality. For now though, most distribution is still predominantly 1920 x 1080 HD or a slightly larger 2K film size.

Large sensors

The 4K discussion starts at sensor size. Camera manufacturers have adopted larger sensors to emulate the look of film for characteristics such as resolution, optics and dynamic range. Although different sensors may be of a similar physical dimension, they don’t all use the same number of pixels. A RED EPIC and a Canon 7D use similarly sized sensors, but the resulting pixels are quite different. Three measurements come into play: the actual dimensions, the maximum area of light-receiving pixels (photosites) and the actual output size of recorded frames. One manufacturer might use fewer, but larger photosites, while another might use more pixels of a smaller size that are more densely packed. There is a very loose correlation between actual pixel size, resolution and sensitivity. Larger pixels yield more stops and smaller pixels give you more resolution, but that’s not an absolute. RED has shown with EPIC that it is possible to have both.

The biggest visual attraction to large-sensor cameras appears to be the optical characteristics they offer – namely a shallower depth of field (DoF).  Depth of field is a function of aperture and focal length. Larger sensors don’t inherently create shallow depth of field and out-of-focus backgrounds. Because larger sensors require a different selection of lenses for equivalent focal lengths compared with standard 2/3-inch video cameras, a shallower depth of field is easier to achieve and thus makes these cameras the preferred creative tool. Even if you work with a camera today that doesn’t provide a 4K output, you are still gaining the benefits of this engineering. If your target format is HD, you will get similar results – as it relates to these optical characteristics – regardless of whether you use a RED, an ARRI ALEXA or an HDSLR.

Camera choices

Quite a few large-sensor cameras have entered the market in the past few years. Typically these use a so-called Super 35MM-sized sensor. This means it’s of a dimension comparable to a frame of 3-perf 35MM motion picture film. Some examples are the RED One, RED EPIC, ARRI ALEXA, Sony F65, Sony F35, Sony F3 and Canon 7D among others. That list has just grown to include the brand new Canon EOS C300 and the RED SCARLET-X. Plus, there are other variations, such as the Canon EOS 5D Mark II and EOS 1D X (even bigger sensors) and the Panasonic AF100 (Micro Four Thirds format). Most of these deliver an output of 1920 x 1080, regardless of the sensor. RED, of course, sports up to 5K frame sizes and the ALEXA can also generate a 2880 x 1620 output, when ARRIRAW is used.

This year was the first time that the industry at large has started to take 4K seriously, with new 4K cameras and post solutions. Sony introduced the F65, which incorporates a 20-megapixel 8K sensor. Like other CMOS sensors, the F65 uses a Bayer light filtering pattern, but unlike the other cameras, Sony has deployed more green photosites – one for each pixel in the 4K image. Today, this 8K sensor can yield 4K, 2K and HD images. The F65 will be Sony’s successor to the F35 and become a sought-after tool for TV series and feature film work, challenging RED and ARRI.

November 3rd became a day for competing press events when Canon and RED Digital Cinema both launched their newest offerings. Canon introduced the Cinema EOS line of cameras designed for professional, cinematic work. The first products seem to be straight out of the lineage that stems from Canon’s original XL1 or maybe even the Scoopic 16MM film camera. The launch was complete with a short Bladerunner-esque demo film produced by Stargate Studios along with a new film shot by Vincent Laforet (the photographer who launch the 5D revolution with his short film Reverie)  called Möbius.

The Canon EOS C300 and EOS C300 PL use an 8.3MP CMOS Super 35MM-sized sensor (3840 x 2160 pixels). For now, these only record at 1920 x 1080 (or 1280 x 720 overcranked) using the Canon XF codec. So, while the sensor is a 4K sensor, the resulting images are standard HD. The difference between this and the way Canon’s HDSLRs record is a more advanced downsampling technology, which delivers the full pixel information from the sensor to the recorded frame without line-skipping and excessive aliasing.

RED launched SCARLET-X to a fan base that has been chomping at the bit for years waiting for some version of this product. It’s far from the original concept of SCARLET as a high-end “soccer mom” camera (fixed lens, 2/3” sensor, 3K resolution with a $3,000 price tag). In fact, SCARLET-X is, for all intents and purposes, an “EPIC Lite”. It has a higher price than the original SCARLET concept, but also vastly superior specs and capabilities. Unlike the Canon release, it delivers 4K recorded motion images (plus 5K stills) and features some of the developing EPIC features, like HDRx (high dynamic range imagery).

If you think that 4K is only a high-end game, take a look at JVC. This year JVC has toured a number of prototype 4K cameras based on a proprietary new LSI chip technology that can record a single 3840 x 2160 image or two 1920 x 1080 streams for the left and right eye views of a stereo 3D recording. The GY-HMZ1U is derivative of this technology and uses dual 3.32MP CMOS sensors for stereo 3D and 2D recordings.

Post at 4K

Naturally the “heavy iron” systems from Quantel and Autodesk have been capable of post at 4K sizes for some time; however, 4K is now within the grasp of most desktop editors. Grass Valley EDIUS, Adobe Premiere Pro and Apple Final Cut Pro X all support editing with 4K media and 4K timelines. Premiere Pro even includes native camera raw support for RED’s .r3d format at up to EPIC’s 5K frames. Avid just released its 6.0 version (Media Composer 6, Symphony 6 and NewsCutter 10), which includes native support for RED One and EPIC raw media. For now, edited sequences are still limited to 1920 x 1080 as a maximum size. For as little as $299 for FCP X and RED’s free REDCINE-X (or REDCINE-X PRO) media management and transcoding tool, you, too, can be editing with relative ease on DCP-compliant 4K timelines.

Software is easy, but what about hardware? Both AJA and Blackmagic Design have announced 4K solutions using the KONA 3G or Decklink 4K cards. Each uses four HD-SDI connections to feed four quadrants of a 4K display or projector at up to 4096 x 2160 sizes. At NAB, AJA previewed for the press its upcoming 5K technology, code-named “Riker”. This is a multi-format I/O system in development for SD up to 5K sizes, complete with a high-quality, built-in hardware scaler. According to AJA, it will be capable of handling high-frame-rate 2K stereo 3D images at up to 60Hz per eye and 4K stereo 3D at up to 24/30Hz per eye.

Even if you don’t own such a display, 27″ and 30″ computer monitors, such as an Apple Cinema Display, feature native display resolutions of up to 2560 x 1600 pixels. Sony and Christie both manufacture a number of 4K projection and display solutions. In keeping with its plans to round out a complete 4K ecosystem, RED continues in the development of REDRAY PRO, a 4K player designed specifically for RED media.

Written for DV magazine (NewBay Media, LLC)

©2011 Oliver Peters

Easy Canon 5D post – Round III

The interest in HDSLR production and post shows no sign of waning. Although some of this information will seem redundant with earlier articles (here and here), I decided it was a good time to set down a working recipe of how I like to deal with these files. To some extend this is a “refresh” of the Round II article, given the things I’ve learned since then. The Canon cameras are the dominant choice, but that’s for today. Nikon is coming on strong with its D7000 and Panasonic has made a serious entry into the large-format-sensor video camera market with its Micro 4/3” AG-AF100. In six months, the post workflows might once again change.

To date, I have edited about 40 spots and short-form videos that were all shot using the Canon EOS 5D Mark II. Many of the early post issues, like the need to convert frame rates, are now behind us. This means fewer variables to consider. Here is a step-by-step strategy for working with HDSLR footage, specifically from Canon 5D/7D/1D HDLSR cameras.

Conversion

Before doing anything with the camera files, it is IMPERATIVE that you clone the camera cards. This is your “negative” and you ALWAYS want to preserve it in its original and UNALTERED form. One application to consider for this purpose is Videotoolshed’s Offloader.

Once that’s out of the way, the first thing I do with files from a Canon 5D or 7D is convert them to the Apple ProRes codec. Yes, various NLEs can natively work with the camera’s H.264 movie files, but I still find this native performance to be sluggish. I prefer to organize these files outside of the NLE and get them into a codec that’s easy to deal with using just about any editing or compositing application. Generally, I will use ProResLT, however, if there is really a quality concern, because the project may go through more heavy post,  then use standard ProRes or ProResHQ. Avid editors may choose to use an Avid DNxHD codec instead.

I have tried the various encoders, like Compressor or Grinder, but in the end have come back to MPEG Streamclip. I haven’t tried 5DtoRGB yet, because it is supposed to be a very slow conversion and most TV projects don’t warrant the added quality it may offer. I have also had unreliable results using the FCP Log and Transfer EOS plug-in. So, in my experience, MPEG Streamclip has not only been the fastest encoder, but will easily gobble a large batch without crashing and delivers equal quality to most other methods. 32GB CF cards will hold about 90-96 minutes of Canon video, so a shoot that generates 4-8 cards in a day means quite a lot of file conversion and you need to allow for that.

MPEG Streamclip allows you to initiate four processes in the batch at one time, which means that on a 4, 8 or 12-core Mac Pro, your conversion will be approximately real-time. The same conversion runs about 1.5x real-time (slower) using the EOS plug-in. The real strength of MPEG Streamclip is that it doesn’t require FCP, so data conversion can start on location on an available laptop, if you are really in that sort of rush.

Timecode and reel numbers

The Canon camera movie files contain little or no metadata, such as a timecode track. There is a THM file (thumbnail file) that contains a data/time stamp. The EOS plug-in, as well as some applications, use this to derive timecode that more-or-less corresponds to TOD (time-of-day) code. In theory, this means that consecutive clips should not have any timecode overlap, but unfortunately I have not found that to be universally true. In my workflow, I generally never use these THM files. My converted ProRes files end up in separate folders that simply contain the movie files and nothing else.

It is important to settle on a naming strategy for the cards. This designator will become the reel ID number, which will make it easy to trace back to the origin of the footage months later. You may use any scheme you like, but I recommend a simple abbreviation for location/day/camera/card. For example, if you shoot for several days in San Francisco with two cameras, then Day 1, Camera 1, Card 1 would be SF01A001 (cameras are designated as A, B, C, etc.); Day 1, Cam 2, Card 1 would be SF01B001; Day 2, Cam 1, Card 3 would be SF02A003 and so on. These card ID numbers are consistent with standard EDL conventions for numbering videotape reels. Create a folder for each card’s contents using this scheme and make sure the converted ProRes files end up in the corresponding folders.

I use QtChange to add timecode to the movie files. I will do this one folder at a time, using the folder name as the reel number. QtChange will embed the folder name (like SF01A001) into the file as the reel number when it writes the timecode track. I’m not a big fan of TOD code and, as I mentioned, the THM files have posed some problems. Instead, I’ll assign new timecode values in QtChange – typically a new hour digit to start each card. Card 1 starts at 1:00:00:00. Card 2 starts at 2:00:00:00 and so on. If Card 1 rolled over into the next hour digit, I might increment the next card’s starting value. So Card 2 might start at 2:30:00:00 or 3:00:00:00, just depending on the overall project. The objective is to avoid overlapping timecodes.

Renaming files

I never change the names of the original H.264 camera files. Since I might need to get back to these files from the converted ProRes media at some point in the future, I will need to be able to match names, like MVI_9877.mov or MVI_1276.mov. This means that I won’t remove the movie file name from the ProRes files either, but it is quite helpful to append additional info to the file name. I use R-Name (a file renaming batch utility) to do this. For example, I might have a set of files that constitute daytime B-roll exterior shots in Boston. With R-Name, I’ll add “-Bos-Ext” after the file name and before the .mov extension.

In the case of interview clips, I’ll manually append a name, like “-JSmith-1” after the movie name. By using this strategy, I am able to maintain the camera’s naming convention for an easy reference back to the original files, while still having a file that’s easy to recognize simply by its name.

Double-system sound

The best approach for capturing high-quality audio on an HDSLR shoot is to bring in a sound mixer and employ film-style, double-system sound techniques. Professional audio recorders, like a Zaxcom DEVA, record broadcast WAVE files, which will sync up just fine and hold sync through the length of the recording. Since the 5D/7D/1D cameras now record properly at 23.98, 29.97 or 25fps, no audio pulldown or speed adjustment should be required for sync.

If you don’t have the budget for this level of audio production, then a Zoom H4n (not the H4) or a Tascam DR-100 are viable options. Record the files at 48kHz sampling in a 16-bit or 24-bit WAVE format. NO MP3s. NO 44.1kHz.

The Zaxcom will have embedded timecode, but the consumer recorders won’t. This doesn’t really matter, because you should ALWAYS use a slate with a clapstick to provide a sync reference. If you use a recorder like a Zaxcom, then you should also use a slate with an LED timecode display. This makes it easy to find the right sound file. In the case of the Zoom, you should write the audio track number on the slate, so that it’s easy to locate the correct audio file in the absence of timecode.

You can sync up the audio manually in your NLE by lining up the clap on the track with the picture – or you can use an application like Singular Software’s PluralEyes. I recommend tethering the output of the audio recorder to the camera whenever possible. This gives you a guide track, which is required by PluralEyes. Ideally, this should have properly matched impedances so it’s useable as a back-up. It may be impractical to tether the camera, in which case, make sure to record reference audio with a camera mic. This may pose more problems for PluralEyes, but it’s better than nothing.

Singular Software has recently introduced DualEyes as a standalone application for syncing double-system dailies.

Your edit system

As you can see, most of this work has been done before ever bringing the files into an NLE application. To date, all of my Canon projects have been cut in Final Cut and I continue to find it to be well-suited for these projects – thanks, in part, to this “pre-edit” file management. Once you’ve converted the files to ProRes or ProResLT, though, they can easily be brought into Premiere Pro CS5 or Media Composer 5. The added benefit is that the ProRes media will be considerably more responsive in all cases than the native H.264 camera files.

Although I would love to recommend editing directly via AMA in Media Composer 5, I’m not quite sure Avid is ready for that. In my own experience, Canon 5D/7D/1D files brought in using AMA as either H.264 or ProRes are displayed at the proper video levels. Unfortunately others have had a different experience, where their files come in with RGB values that exhibit level excursions into the superwhite and superblack regions. The issue I’ve personally encountered is that when I apply non-native Avid AVX effects, like Boris Continuum Complete, Illusion FX or Sapphire, the rendered files exhibit crushed shadow detail and a shifted gamma value. For some reason, the native Avid effects, like the original color effect, don’t cause the same problem. However, it hasn’t been consistent – that is, levels aren’t always crushed.

Recommendations for Avid Media Composer editors

If you are an Avid editor using Media Composer 5, then I have the following recommendations for when you are working with H.264 or ProRes files. If you import the file via AMA and the levels are correct (black = 16, peak white = 235), then transcode the selected cut to DNxHD media before adding any effects and you should be fine. On the other hand, if AMA yields incorrect levels (black = 0, peak white = 255), then avoid AMA. Import “the old-fashioned way” and set the import option for the incoming file as having RGB levels. Avid has been made aware of these problems, so this behavior may be fixed in some future patch.

There is a very good alternative for Avid Media Composer editors using MPEG Streamclip for conversion. Instead of converting the files to one of the ProRes codecs, convert them to Avid DNxHD (using 709 levels), which is also available under the QuickTime options. I have found that these files link well to AMA and, at least on my system, display correct video levels. If you opt to import these the “old” way (non-AMA), the files will come in as a “fast import”. In this process, the QuickTime files are copied and rewrapped as MXF media, without any additional transcoding time.

“Off-speed” files, like “overcranked” 60fps clips from a Canon 7D can be converted to a different frame rate (like 23.98, 25 or 29.97) using the “conform” function of Apple Cinema Tools. This would be done prior to transcoding with MPEG Streamclip.

Avid doesn’t use the embedded reel number from a QuickTime file in its reel number column. If this is important for your workflow, then you may have to manually modify files after they have been imported into Media Composer or generate an ALE file (QtChange or MetaCheater) prior to import. That’s why a simple mnemonic, like SF01A001 is helpful.

Although this workflow may seem a bit convoluted to some, I love the freedom of being able to control my media in this way. I’m not locked into fixed metadata formats like P2. This freedom makes it easier to move files through different applications without being wedded to a single NLE.

Here are some more options for Canon HDSLR post from another article written for Videography magazine.

©2010 Oliver Peters

Grind those EOS files!

I have a love/hate relationship with Apple Compressor and am always on the lookout for better encoding tools. Part of our new file-based world is the regular need to process/convert/transcode native acquisition formats. This is especially true of the latest crop of HDSLRs, like the Canon EOS 5D Mark II and its various siblings. A new tool in this process is Magic Bullet Grinder from Red Giant Software. Here’s a nice description by developer Stu Maschwitz as well as another review by fellow editor and blogger, Scott Simmons.

I’ve already pointed out some workflows for getting the Canon H.264 files into an editable format in a previous post. Although Avid Media Composer 5, Adobe Premiere Pro CS5 and Apple Final Cut Pro natively support editing with the camera files – and although there’s already a Canon EOS Log and Transfer plug-in for FCP – I still prefer to convert and organize these files outside of my host NLE. Even with the newest tools, native editing is clunky on a large project and the FCP plug-in precludes any external organization, since the files have to stay in the camera’s folder structure with their .thm files.

Magic Bullet Grinder offers a simple, one-step batch conversion utility that combines several functions that otherwise require separate applications in other workflows. Grinder can batch-convert a set of HDSLR files, add timecode and simultaneously create proxy editing files with burn-in. In addition, it will upscale 720p files to 1080p. Lastly, it can conform frame-rates to 23.976fps. This is helpful if you want to shoot 720p/60 with the intent of overcranking (displayed as slow motion at 24fps).

The main format files are converted to either the original format (with added timecode), ProRes, ProRes 4444 or two quality levels of PhotoJPEG. Proxies are either ProRes Proxy or PhotoJPEG, with the option of several frame size settings. In addition, proxy files can have a burn-in with various details, such as frame numbers, timecode, file name + timecode or file name + frame numbers. Proxy generation is optional, but it’s ideal for offline/online editing workflows or if you simply need to generate low-bandwidth files for client review.

Grinder’s performance is based on the number of cores. It sends one file to each core, so in theory, eight files would be simultaneously processed on an 8-core machine. Speed and completion time will vary, of course, with the number, length and type of files and whether or not you are generating proxies. I ran a head-to-head test (main format only, no proxy files) on my 8-core MacPro with MPEG Streamclip and Compressor, using 16 H.264 Canon 5D files (about 1.55GB of media or 5 minutes of footage). Grinder took 12 minutes, Compressor 11 minutes and MPEG Streamclip 6 minutes. Of course, neither Compressor nor MPEG Streamclip would be able to handle all of the other functions – at least not within the same, simplified process. The conversion quality of Magic Bullet Grinder was quite good, but like MPEG Streamclip, it appears that ProRes files are generated with the QuickTime “automatic gamma correction” set to “none”. As such, the Compressor-converted files appeared somewhat lighter than those from either Grinder or MPEG Streamclip.

This is a really good effort for a 1.0 product, but in playing with it, I’ve discovered it has a lot of uses outside of HDSLR footage. That’s tantalizing and brings to mind some potential suggestions as well as issues with the way that the product currently works. First of all, I was able to convert other files, such as existing ProRes media. In this case, I would be interested in using it to ONLY generate proxy files with a burn-in. The trouble now is that I have to generate both a new main file (which isn’t needed) as well as the proxy. It would be nice to have a “proxy-only” mode.

The second issue is that timecode is always newly generated from the user entry field. Grinder doesn’t read and/or use an existing QuickTime timecode track, so you can’t use it to generate a proxy with a burn-in that matches existing timecode. In fact, if your source file has a valid timecode track, Grinder generates a second timecode track on the converted main file, which confuses both FCP and QuickTime Player 7. Grinder also doesn’t generate a reel number, which is vital data used by many NLEs in their media management.

I would love to see other format options. For instance, I like ProResLT as a good format for these Canon files. It’s clean and consumes less space, but isn’t a choice with Grinder. Lastly, the conform options. When Grinder conforms 30p and 60p files to 24p (23.976), it’s merely doing the same as Apple Cinema Tools by rewriting the QuickTime playback rate metadata. The file isn’t converted, but simply told to play more slowly. As such, it would be great to have more options, such as 30fps to 29.97fps for the pre-firmware-update Canon 5D files. Or conform to 25fps for PAL countries.

I’ve seen people comment that it’s a shame it won’t convert GoPro camera files. In fact it does! Files with the .mp4 extension are seen as an unsupported format. Simply change the file extension from .mp4 to .mov and drop it into Grinder. Voila! Ready to convert.

At $49 Magic Bullet Grinder is a great, little utility that can come in handy in many different ways. At 1.0, I hope it grows to add some of the ideas I’ve suggested, but even with the current features, it makes life easier in so many different ways.

©2010 Oliver Peters