Free BCC Looks for Final Cut Pro

The Boris FX Continuum and/or Sapphire filters have traditionally been essential add-ons for many editors, regardless of NLE brand. The features of these filters are tweaked for the specifics of each host application, but in general, a BCC filter used in Media Composer can be expected to work and look more or less the same way in Premiere Pro.

Compatibility became more difficult for many Final Cut plug-in developers when Apple launched FCPX. For instance, the initial BCC version for FCPX was designed to closely mimic the other BCC versions, yet staying within the then-new Apple architecture. However, some filters never made it into the Final Cut version of BCC, because it wasn’t possible. Boris FX took a different approach in 2021. As I discussed in my review of Continuum FCP last year, the version sold for Final Cut Pro is a different animal than previous Continuum packages for Final Cut Pro, as well as other host applications.

This year Boris FX released the updated 2022 version of Continuum FCP for Final Cut Pro and Motion. Features of the 2022 version include GPU-acceleration for every effect, native operation on M1 Macs, HDR compliance, and more presets. However, the biggest new feature is the addition of Mocha and Pixel Chooser for planar tracking and masking within each effect.

The free Looks filter for FCP

While the update is nice, I wanted to look specifically at the free filter being offered. After all, most folks like free! Right? With the new update Boris FX decided to offer one of the filters for free, no strings attached. Sure, you can test out Continuum with trial versions, but this filter gives you very useful functions – and no watermark. It stands on its own, regardless of whether of not you get the full package. On the other hand, it also gives you a taste, which just may leave you wanting to get the rest of Continuum.

To start, simply register at the Boris FX website and you’ll be emailed a license code and a download link. The installer includes the full Continuum package. Read the installation prompts carefully if you only want to install the single free filter without also installing the others in a trial mode. Launch FCP and you’ll find the BCC+ Looks filter within the BCC Film Style effects category. Once you apply the effect to a clip, you can set up the parameters in the FCP Inspector pane or launch FX Editor, which is similar across multiple Boris FX products. There are 80 stylized presets in FX Editor’s lefthand browser pane, histogram and parameters are on the right, viewer controls for size and comparison spilt screen options at the top, and transport controls at the bottom.

Looks galore

The presets browser uses the current timeline image for each displayed look. Each time you move through the FX Editor timeline and stop on a frame, the preset thumbnails will be updated to the same frame as in the viewer. There are tons of variations from which to select. Once you find a look that you like, click Apply to close FX Editor. Now your FCP timeline clip is updated with that look. But it’s also easy to customize the look either by adjusting the preset or starting from scratch.

The BCC+ Looks filter is a full-featured color correction tool built around seven tabbed parameter layers within the plug-in. Processing is applied in this order, much like nodes in Resolve or layers in Lightroom: [primary] color correction, diffusion, color gradient, gels, [film] lab, grain, and post color correction. Each panel section uses slider controls, plus color pickers for gels and gradients. These parameters can be controlled in the FX Editor or directly from the FCP inspector pane without ever opening the FX Editor.

Let’s say you want a monochrome image with a color wash, diffusion, and some added film grain. If you used the native FCP tools instead of the BCC+ Looks plug-in, then this would require using several different effects in a stack. You still might not get results that look as good. Yet with Looks, it can all be done from a single pane straight from the inspector.

Although this filter is placed into the BCC Film Style category, it does not include any presets for specific Kodak or Fuji film stocks. You’d have to get the full Continuum FCP package to get those. However, there are some generic film emulation presets, like 8mm. If you open the lab tab, you do find options for bleach bypass and cross process settings. This, plus the grain tab, should be all you need to create some pleasing looks that emulate film. Quite frankly, I’ve worked with actual film in the past and most effects that claim to look like a specific brand of film stock never look right to me anyway.

Mocha

Even though this is a free filter, it still includes a proper version of Mocha designed to work with these effects. Launch Mocha with the Mocha Mask button, which then opens the clip into the separate and familiar Mocha editor. Masking and planar tracking work the same as with all other versions. You might not use Mocha often with this filter, since you’re typically applying looks and color correction full screen. However, having Mocha at your disposal does make it easy to isolate portions of the image if you want to apply a look only to a region, such as a person’s face.

In closing, remember that BCC+ Looks is designed for stylized treatment of the image. It doesn’t include some of the other bells-and-whistles of the Continuum plug-in set, like gobos, glitch and damage effects, lighting, transitions, or titles. You can certainly buy the whole package and add those effects later if you find the need. But if not, BCC+ Looks is a great way to get your feet wet with Continuum and Mocha. Did I say it’s free?

©2022 Oliver Peters

CineMatch for FCP

Last year FilmConvert, developers of the Nitrate film emulation plug-in, released CineMatch. It’s a camera-matching plug-in designed for multiple platforms – including operating systems and different editing/grading applications. The initial 2020 release worked with DaVinci Resolve and Premiere Pro. Recently FilmConvert added Final Cut Pro support. You can purchase the plug-in for individual hosts or as a bundle for multiple hosts. If you bought the bundled version last year, then that license key is also applicable to the new Final Cut Pro plug-in. So, nothing extra to purchase for bundle owners.

CineMatch is designed to work with log and raw formats and a wide range of camera packs is included within the installer. To date, 70 combinations of brands and models are supported, including iPhones. FilmConvert has created these profiles based on the color science of the sensor used in each of the specific cameras.

CineMatch for FCP works the same way as the Resolve and Premiere Pro versions. First, select the source profile for the camera used. Next, apply the desired target camera profile. Finally, make additional color adjustments as needed.

If you a shoot with one predominant A camera that is augmented by B and C cameras of different makes/models, then you can apply CineMatch to the B and C camera clips in order to better match them to the A camera’s look.

You can also use it to shift the look of a camera to that of a different camera. Let’s say that you want a Canon C300 to look more like an ARRI Alexa or even an iPhone. Simply use CineMatch to do that. In my example images, I’ve adjusted Blackmagic and Alexa clips so that they both emulate the color science of a Sony Venice camera.

When working in Final Cut Pro, remember that it will automatically apply Rec 709 LUTs to some log formats, like ARRI Alexa Log-C. When you plan to use CineMatch, be sure to also set the Camera LUT pulldown selector in the inspector pane to “none.” Otherwise, you will be stacking two LUT conversions resulting in a very ugly look.

Once camera settings have been established, you can further adjust exposure, color balance, lift/gamma/gain color wheels, saturation, and the luma curve. There is also an HSL curves panel to further refine hue, saturation, and luma for individual color ranges. This is helpful when trying to match two cameras or shots to each other with greater accuracy. FCP’s comparison viewer is a great aid in making these tweaks.

As a side note, it’s also possible to use CineMatch in conjunction with FilmConvert Nitrate (if you have it) to not only adjust color science, but then to subsequently emulate different film stocks and grain characteristics.

CineMatch is a useful tool when working with different camera types and want to achieve a cohesive look. It’s easy and quick to use with little performance impact. CineMatch now also supports M1 Macs.

©2021 Oliver Peters

Final Cut Pro vs DaVinci Resolve

Apple’s innovative Final Cut Pro editing software has passed its tenth year and for many, the development pace has become far too slow. As a yardstick, users point to the intensity with which Blackmagic Design has advanced its flagship DaVinci Resolve application. Since acquiring DaVinci, Blackmagic has expanded the editing capabilities and melded in other acquisitions, such as EyeOn Fusion and Fairlight audio. They’ve even integrated a second, FCP-like editing model called the Cut page. This has some long-time Final Cut editors threatening to jump ship and switch to Resolve.

Let’s dig a bit deeper into some of the comparisons. While Resolve has a strong presence as a premier color correction tool, its actual adoption as the main editor within the post facility world hasn’t been very strong. On the other hand, if you look outside of the US to Europe and the rest of the world, you’ll find quite a few installations of Final Cut Pro within larger media operations and production companies. Clearly both products have found a home servicing professional workflows.

Editing versus finishing

When all production and post was done with film, the picture editor would make all of the creative editing decisions by cutting workprint and sound using a flatbed or upright editing machine. The edited workprint became the template for the optical house, negative cutter, film timer, and lab to produce the final film prints. There was a clear delineation between creative editing and the finishing stages of filmmaking.

Once post moved to videotape, the film workflow was translated into its offline (creative editing) and online (finishing) video counterparts. Offline editing rooms used low-res formats and were less expensive to equip and operate. Online rooms used high-res formats and often looked like the bridge of a starship. But it could also be the other way around, because the offline and online processes were defined by the outcome and not the technology. Offline = creative decisions. Online = finished masters. Of course, given proper preparation or a big budget, the offline edit stage could be skipped. Everything – creative edit and finishing – was all performed in the same online edit bay.

Early nonlinear editing supplemented videotape offline edit bays for a hybrid workflow. As computer technology advanced and NLE quality and capabilities improved, all post production shifted to workstation-based operations. But the offline/online – editing/finishing – workflows have persisted, in spite of the fact that most computers and editing applications are capable of meeting both needs. Why? It comes down to three things: personality, kit, and skillset.

Kit first. Although your software might do everything well, you may or may not have a capable computer, which is why proxy workflows exist today. Beyond that comes monitoring. Accurate color correction and sound mixing requires proper high-quality audio and video monitoring. A properly equipped finishing room should also have the right lighting environment and/or wall treatments for sound mixing. None of this is essential for basic editing tasks, even at the highest level. While having a tool like Resolve makes it possible to cover all of the technical aspects of editing and finishing, if you don’t have the proper room, high-quality finishing may still be a challenge.

Each of the finishing tasks requires its own specialized skillset. A topnotch re-recording mixer isn’t going to be a great colorist or an award-winning visual effects compositor. It’s not that they couldn’t, but for most of us, that’s not the way the mind works nor the opportunities presented to us. As we spend more time at a specialized skill – the “10,000 hour” rule – the better we are at it.

Finally, the issue of personality. Many creative editors don’t have a strong technical background and some aren’t all that precise in how they handle the software. As someone who works on both sides, I’ve encountered some of the most awful timelines on projects where I’ve handled the finishing tasks. The cut was great and very creative, but the timeline was a mess.

On the flipside, finishing editors (or online editors before them) tend to be very detail-oriented. They are often very creative in their own right, but they do tend to fit the “left-brained” description. Many prefer finishing tasks over the messy world of clients, directors, and so on. In short, a topnotch creative editor might not be a good finisher and vice versa.

The all-in-one application versus the product ecosystem

Blackmagic Design’s DaVinci Resolve is an all-in-one solution, combining editing, color, visual effects, and sound mixing. As such, it follows in the footsteps of other all-in-ones, like Avid|DS (discontinued) and Autodesk Flame (integrated with Smoke and Lustre). Historically, neither of these or any other all-in-ones have been very successful in the wider editing market. Cost coupled with complex user interfaces have kept them in more rarified areas of post.

Apple took the opposite approach with the interaction of Final Cut Pro X. They opted for a simpler, more approachable interface without many features editors had grown used to in the previous FCP 7/FCP Studio versions. This stripped-down application was augmented by other Apple and third-party applications, extensions, and plug-ins to fill the void.

If you want the closest equivalent to Resolve’s toolkit in the Final Cut ecosystem, you’ll have to add Motion, Logic Pro, Xsend Motion, X2Pro Audio Convert, XtoCC, and SendToX at a very minimum. If you want to get close to the breadth of Adobe Creative Cloud offerings, also add Compressor, Pixelmator Pro (or Affinity, Photo, Publisher, and Designer), and a photo application. Resolve is built upon a world-class color correction engine, but Final Cut Pro does include high-quality grading tools, too. Want more? Then add Color Finale 2, Coremelt Chromatic, FilmConvert Nitrate, or one of several other color correction plug-ins.

Yes, the building block approach does seem messy, but it allows a user to tailor the software toolkit according to their own particular use case. The all-in-one approach might appear better, but that gets to personality and skillset. It’s highly unlikely that the vast majority of Resolve users will fully master its four core capabilities: edit, color, VFX (Fusion), and mixing (Fairlight). A good, full-time editor probably isn’t going to be as good at color correction as a full-time colorist. A great colorist won’t also be a good mixer.

In theory, if you have a team of specialists who have all centralized around Resolve, then the same tool and project files could bounce from edit to VFX, to color, and to the mix, without any need to roundtrip between disparate applications. In reality it’s likely that your go-to mograph/VFX artist/compositor is going to prefer After Effects or maybe Nuke. Your favorite audio post shop probably won’t abandon Pro Tools for Fairlight.

Even for the single editor who does it all, Resolve presents some issues with its predefined left-to-right, tabbed workflow. For example, grading performed in the Color tab can’t be tweaked in the Edit tab. The UI is based on modal tabs instead of fly-out panels within a single workspace.

If you boil it all down, Resolve is the very definition of a finishing application and appeals best to editors of that mindset and with the skills to effectively use the majority of its power. Final Cut Pro is geared to the creative approach with its innovative feature set, like metadata-based organization, skimming, and the magnetic timeline. It’s more approachable for less-experience editors, hiding the available technical complexity deeper down. However, just like offline and online editing suites, you can flip it around and do creative editing with Resolve and finishing with Final Cut Pro (plus the rest of the ecosystem).

The intangibles of editing

It’s easy to compare applications on paper and say that one product appears better and more feature-rich than another. That doesn’t account for how an application feels when you use it, which is something Apple has spent a lot of time thinking about. Sometimes small features can make all the difference in an editor’s preference. The average diner might opine that chef’s knives are the same, but don’t tell that to a real chef!

Avid Media Composer editors rave about the trim tool. Many Adobe Premiere Pro editors swear by Dynamic Link. Some Apple Final Cut Pro editors get frustrated when they have to return to a track-based, non-magnetic NLE. It’s puzzling to me that some FCP stalwarts are vocal about shifting to Resolve (a traditional track-based NLE) if Apple doesn’t add ‘xyz’ feature. That simply doesn’t make sense to me, unless a) you are equally comfortable in track-based versus trackless architectures, and/or b) you truly have the aptitude to make effective use out of an all-in-one application like Resolve. Of course, you can certainly use both side-by-side depending on the task at hand. Cost is no longer an impediment these days. Organize and cut in FCP, and then send an FCPXML of the final sequence to Resolve for the grade, visual effects, and the mix.

It’s horses for courses. I recently read where NFL Films edits in Media Composer, grades in DaVinci Resolve, and conforms/finishes projects in Premiere Pro. That might seem perplexing to some, but makes all the sense in the world to me, because of the different skillsets of the users at those three stages of post. In my day gig, Premiere Pro is also the best choice for our team of editors. Yet, when I have projects that are totally under my control, I’ll often use FCP.

Ultimately there is no single application that is great at each and every element in post production. While the majority of features might fit all of my needs, that may not be true for you or anyone else. The divide between creative editing and finishing is likely to continue – at least at the higher end of production. In that context, Final Cut Pro still makes more sense for a frictionless editing experience, but Resolve is hard to beat for finishing.

There is one final caveat to consider. The post world is changing and much is driven by the independent content creator, as well as the work-from-home transformation. That market segment is cost conscious and subscription business models are less appealing. So Resolve’s entry point at free is attractive. Coupling Resolve with Blackmagic’s low cost, high quality cameras is also a winning strategy for new users. While Resolve can be daunting in its breadth, a new user can start with just the tools needed to complete the project and then learn new aspects of the software over time. As I look down the road, it’s a toss up as to who will be dominant in another ten years.

For another look at this topic, click here.

©2021 Oliver Peters

Boris FX Continuum FCP 2021

The software teams at Boris FX have been busy introducing new 2021 versions of their assorted product line. This includes Continuum for Final Cut Pro, which has not only been updated for faster performance, but is in fact a re-imagined product. It’s somewhat stripped down from earlier versions – missing mocha tracking, Primatte keying, and built-in particle illusion effects. (The latter are available through a free, standalone application for the Mac.) Nevertheless, this comprehensive set of lighting effects, film stock emulations, and other image stylizing tools has a lot to offer. It’s bound to be a hit with many users. Check out my in-depth review at FCP.co for all of the details. For even more, here’s a new video from Ian Anderson about using this new version in FCP. Go back to the head of Anderson’s presentation for an in-depth overview of Final Cut Pro.

©2021 Oliver Peters

Putting Apple’s iMac Pro Through the Paces

At the end of December, Apple made good on the release of the new iMac Pro and started selling and shipping the new workstations. While this could be characterized as a stop-gap effort until the next generation of Mac Pro is produced, that doesn’t detract from the usefulness and power of this design in its own right. After all, the iMac line is the direct descendant in spirit and design of the original Macintosh. Underneath the sexy, all-in-one, space grey enclosure, the iMac Pro offers serious workstation performance.

I work mostly these days with a production company that produces and posts commercials, corporate videos, and entertainment programming. Our editing set-up consists of seven workstations, plus an auxiliary machine connected to a common QNAP shared storage network. These edit stations consisted of a mix of old and new Mac Pros and iMacs (connected via 10GigE), with a Mac Mini for the auxiliary (1GigE). It was time to upgrade the oldest machines, which led us to consider the iMac Pros. The company picked up three of them – replacing two Mac Pro towers and an older iMac. The new configuration is a mix of three, one-year-old Retina 5K iMacs (late 2015 model), a 2013 “trash can” Mac Pro, and three 2017 iMac Pros.

There are plenty of videos and articles on the web about how these machines perform; but, the testers often use artificial benchmarks or only Final Cut Pro X. This shop has a mix of NLEs (Adobe, Apple, Avid, Blackmagic Design), but our primary tool is Adobe Premiere Pro CC 2018. This gave me a chance to compare how these machines stacked up against each other in the kind of work we actually do. This comparison isn’t truly apples-to-apples, since the specs of the three different products are somewhat different from each other. Nevertheless, I feel that it’s a valid real-world assessment of the iMac Pros in a typical, modern post environment.

Why buy iMac Pros at all?

The question to address is why should someone purchase these machines? Let me say right off the bat, that if your main focus is 3D animation or heavy compositing using After Effects or other applications – and speed and performance are the most important factor – then don’t buy an Apple computer. Period. There are plenty of examples of Dell and HP workstations, along with high-end gaming PCs, that outperform any of the Macs. This is largely due to the availability of advanced NVidia GPUs for the PC, which simply aren’t an option for current Macs.

On the other hand, if you need a machine that’s solid and robust across a wide range of postproduction tasks – and you prefer the Mac operating ecosystem – then the iMac Pros are a good choice. Yes, the machine is pricy and you can buy cheaper gaming PCs and DIY workstations, but if you stick to the name brands, like Dell and HP, then the iMac Pros are competitively priced. In our case, a shift to PC would have also meant changing out all of the machines and not just three – therefore, even more expensive.

Naturally, the next thing is to compare price against the current 5K iMacs and 2013 Mac Pros. Apple’s base configuration of the iMac Pro uses an 8-core 3.2GHz Xeon W CPU, 32GB RAM, 1TB SSD, and the Radeon Pro Vega 56 GPU (8GB memory) for $4,999. A comparably configured 2013 Mac Pro is $5,207 (with mouse and keyboard), but no display. Of course, it also has the dual D-700 GPUs. The 5K iMac in a similar configuration is $3,729. Note that we require 10GigE connectivity, which is built into the iMac Pros. Therefore, in a direct comparison, you would need to bump up the iMac and Mac Pro prices by about $500 for a Thunderbolt2-to-10GigE converter.

Comparing these numbers for similar machines, you’d spend more for the Mac Pro and less for the iMac. Yet, the iMac Pro uses newer processors and faster RAM, so it could be argued that it’s already better out of the gate in the base configuration than Apple’s former top-of-the-line product. It has more horsepower than the tricked-out iMac, so then it becomes a question of whether the cost difference is important to you for what you are getting.

Build quality

Needless to say, Apple has a focus on the quality and fit-and-finish of its products. The iMac Pro is no exception. Except for the space grey color, it looks like the regular 27” iMacs and just as nicely built. However, let me quibble a bit with a few things. First, the edges of the case and foot tend to be a bit sharp. It’s not a huge issue, but compared with an iPhone, iPad, or 2013 Mac Pro, the edges just not as smooth and rounded. Secondly, you get a wireless mouse and extended keyboard. Both have to be plugged in to charge. In the case of the mouse, the cable plugs in at the bottom, rendering it useless during charging. Truly a bad design. The wireless keyboard is the newer, flatter style, so you lose two USB ports that were on the previous plug-in extended keyboard. Personally, I prefer the features and feel of the previous keyboard, not to mention any scroll wheel mouse over the Magic Mouse. Of course, those are strictly items of personal taste.

With the iMac Pro, Apple is transitioning its workstations to Thunderbolt 3, using USB-C connectors. Previous Thunderbolt 2 ports have been problematic, because the cables easily disconnect. In fact, on our existing iMacs, it’s very easy to disconnect the Thunderbolt 2 cable that connects us to the shared storage network, simply by moving the iMac around to get to the ports on the back. The USB-C connectors feel more snug, so hopefully we will find that to be an improvement. If you need to get to the back of the iMac or iMac Pro frequently, in order to plug in drives, dongles, etc., then I would highly recommend one of the docks from CalDigit or OWC as a valuable accessory.

5K screen

Apple spends a lot of marketing hype on promoting their 5K Retina screens. The 27” screens have a raw pixel resolution of 5120×2880 pixels, but that’s not what you see in terms of image and user interface dimensions. To start with, the 5K iMacs and iMac Pros use the same screen resolution and the default display setting (middle scaled option) is 2560×1440 pixels. The top choice is 3200×1800. Of course, if you use that setting, everything becomes extremely small on screen.  Conversely, our 2013 Mac Pro is connected to a 27” Apple LED Cinema Display (non Retina). It’s top scaled resolution is also 2560×1440 pixels. Therefore, at the most useable settings, all of our workstations are set to the same resolution. Even if you scale the resolution up (images and UI get smaller), you are going to end up adjusting the size of the application interface and viewer window. While you might see different viewer size percentage numbers between the machines, the effective size on screen will be the same.

Retina is Apple’s marketing name for high pixel density. This is the equivalent of DPI (dots per inch) in print resolutions. According to a Macworld article, iPhones from 4 to 5s had a pixel density of 326ppi (pixels per inch), while iMacs have 218ppi. Apple converts a device’s display to Retina by doubling the horizontal and vertical pixel count. More pixels are applied to any given area on the screen, resulting in smoother text, smoother diagonal lines, and so on. That’s assuming an application’s interface is optimized for it. At the distance that the editors sit from a 27” display, there is simply little or no difference between the look of the 27” LED display and the 27” iMac Retina screens.

Upgradeability

Future-proofing and upgrades are the biggest negatives thrown at all-in-ones, particularly the iMac Pros. While the user can upgrade RAM in the standard iMacs, that’s not the case with iMac Pros. You can upgrade RAM in the future, but that must be done at a service facility, such as the Apple Store’s Genius service. This means that in three years, when you want the latest, greatest CPU, GPU, storage, etc., you won’t be able to swap out components. But is this really an issue? I’m sure Apple has user research numbers to justify their decisions. Plus, the thermal design of the iMac would make user upgrades difficult, unlike older mac Pro towers.

In my own experience on personal machines, as well as clients’ machines that I’ve helped maintain, I have upgraded storage, GPU cards, and RAM, but never the CPU. Although I do know others who have upgraded Xeon models on their Mac Pro towers. Part of the dichotomy is buying what you can afford now and upgrading later, versus stretching a bit up front and then not needing to upgrade later. My gut feeling is that Apple is pushing the latter approach.

If I tally up the cost of the upgrades that I’ve made after about three years, I would already be part of the way towards a newer, better machine anyway. Plus, if you are cutting HD and even 4K today, then just about any advanced machine will do the trick, making it less likely that you’ll need to do that upgrade within the foreseeable life of the machine. An argument can be made for either approach, but I really think that the vast majority of users – even professional users – never actually upgrade any of the internal hardware from that of the configuration as originally purchased.

Performance testing

We ultimately purchased machines that were the 10-core bump-up from the base configuration, feeling that this is the sweet spot (and is currently available) within the iMac Pro product line.

The new machine specs within the facility now look like this:

2013 Mac Pro – 3GHz 8-core Xeon/64GB RAM/dual D-500 GPUs/1TB SSD (Sierra)

2015 iMac – 4GHz 4-core Core i7/32GB RAM/AMD R9/3TB Fusion drive (Sierra)

2017 iMac Pro – 3GHz 10-core Xeon W/64GB RAM/Radeon Vega 64/1TB SSD (High Sierra)

As you can see, the tech specs of the new iMac Pros more closely match the 2013 Mac Pro than the year-old 5K iMacs. Of course, it’s not a perfect match for optimal benchmark testing, but close enough for a good read on how well the iMac Pro delivers in a real working environment.

Test 1 – BruceX

The BruceX test uses a 5K Final Cut Pro X timeline made up only of built-in titles and generators. The timeline is then rendered out to a ProRes file. This tests the pure application without any media and codec variables. It’s a bit of an artificial test and only applicable to FCPX performance, but still useful. The faster the export time, the better. (I have bolded the best results.)

2013 Mac Pro – 26.8 sec.

2015 iMac – 28.3 sec.

2017 iMac Pro – 14.4 sec.

Test 2 – media encoding

In my next test, I took a 4½-minute-long 1080p ProRes file and rendered it to a 4K/UHD (3840×2160) H.264 (1-pass CBR 20Mbps) file. Not only was it being encoded, but also scaled up to 4K in this process. I rendered from and to the desktop, to eliminate any variables from the QNAP system. Finally, I conducted the test using both Adobe Media Encoder (using OpenCL processing) and Apple Compressor.

Two noteworthy issues. The Compressor test was surprisingly slow on the Mac Pro. (I actually ran the Compressor test twice, just to be certain about the slowness of the Mac Pro.) The AME version kicked in the fans on the iMac.

Adobe Media Encoder

2013 Mac Pro – 6:13 min.

2015 iMac – 7:14 min.

2017 iMac Pro – 4:48 min.

 Compressor

2013 Mac Pro – 11:02 min.

2015 iMac – 2:20 min.

2017 iMac Pro – 2:19 min.

 Test 3 – editing timeline playback – multi-layered sequence

This was a difficult test designed to break during unrendered playback. The 40-second 1080p/23.98 sequence include six layers of resized 4K source media.

Layer 1 – DJI clips with dissolves between the clips

Layers 2-5 – 2D PIP ARRI Alexa clips (no LUTs); layer 5 had a Gaussian blur effect added

Layer 6 – native REDCODE RAW with minor color correction

The sequence was created in both Final Cut Pro X and Premiere Pro. Playback was tested with the media located on the QNAP volumes, as well as from the desktop (this should provide the best possible playback).

Playing back this sequence in Final Cut Pro X from the QNAP resulted is the video output largely choking on all of the machines. Playing it back in Premiere Pro from the QNAP was slightly better than in FCPX, with the 2017 iMac Pro performing best of all. It played, but was still choppy.

When I tested playback from the desktop, all three machines performed reasonably well using both Final Cut Pro X (“best performance”) and Premiere Pro (“1/2 resolution”). There were some frames dropped, although the iMac Pro played back more smoothly than the other two. In fact, in Premiere Pro, I was able to set the sequence to “full resolution” and get visually smooth playback, although the indicator light still noted dropped frames. Typically, as each staggered layer kicked in, performance tended to hiccup.

Test 4 – editing timeline playback – single-layer sequence

 This was a simpler test using a standard workflow. The 30-second 1080p/23.98 sequence included three Alexa clips (no LUTs) with dissolves between the clips. Each source file was 4K/UHD and had a “punch-in” and reposition within the HD frame. Each also included a slight, basic color correction. Playback was tested in Final Cut Pro X and Premiere Pro, as well as from the QNAP system and the desktop. Quality settings were increased to “best quality” in FCPX and “full resolution” in Premiere Pro.

My complex timeline in Test 3 appeared to perform better in Premiere Pro. In Test 4, the edge was with Final Cut Pro X. No frames were dropped with any of the three machines playing back either from the QNAP or the desktop, when testing in FCPX. In Premiere Pro, the 2017 iMac Pro was solid in both situations. The 2015 iMac was mostly smooth at “full” and completely smooth at “1/2”. Unfortunately, the 2013 Mac Pro seemed to be the worst of the three, dropping frames even at “1/2 resolution” at each dissolve within the timeline.

Test 5 – timeline renders (multi-layered sequence)

In this test, I took the complex sequence from Test 3 and exported it to a ProRes master file. I used the QNAP-connected versions of the Premiere Pro and Final Cut Pro X timelines and rendered the exports to the desktop. In FCPX, I used its default Share function. In Premiere Pro, I queued the export to Adobe Media Encoder set to process in OpenCL. This was one of the few tests in which the 2013 Mac Pro put in a faster time, although the iMac Pro was very close.

Rendering to ProRes – Premiere Pro (via Adobe Media Encoder)

2013 Mac Pro – 1:29 min.

2015 iMac – 2:29 min.

2017 iMac Pro – 1:45 min.

Rendering to ProRes – Final Cut Pro X

2013 Mac Pro – 1:21 min.

2015 iMac – 2:29 min.

2017 iMac Pro – 1:22 min.

Test 6 – Adobe After Effects – rendering composition

My final test was to see how well the iMac Pro performed in rendering out compositions from After Effects. This was a 1080p/23.98 15-second composition. The bottom layer was a JPEG still with a Color Finesse correction. On top of that were five 1080p ProResLT video clips that had been slomo’ed to fill the composition length. Each was scaled, cropped, and repositioned. Each was beveled with a layer style and had a stylized effect added to it. The topmost layer was a camera layer with all other layers set to 3D, so the clips could be repositioned in z-space. Using the camera, I added a slight rotation/perspective change over the life of the composition.

Rendering to ProRes – After Effects

2013 Mac Pro – 2:37 min.

2015 iMac – 2:15 min.

2017 iMac Pro – 2:03 min.

Conclusion

After all of this testing, one is left with the answer “it depends”. The 2013 Mac Pro has two GPUs, but not every application takes advantage of that. Some apps tax all the available cores, so more, but slower, cores are better. Others go for the maximum speed on fewer cores. All things considered, the iMac Pro performed at the top of these three machines. It was either the best or close/equal to the best.

There is no way to really quantify actual editing playback performance and resolution by any numerical factor. However, it is interesting to look at the aggregate of the six tests that could be quantified. When you compare the cumulative totals of just the iMac Pro and the iMac, the Pro came out 48% faster. Compared to the 2013 Mac Pro, it was 85% faster. The iMac Pro’s performance against the totals of the slowest machines (either iMac or Mac Pro depending on the test), showed it being a whopping 113% faster – more than twice as fast. But it only bested the fastest set by 20%. Naturally, such comparisons are more curiosity than anything else. Some of these numbers will be meaningful and others won’t, depending on the apps used and a user’s storage situation.

I will say that installing these three machines was the easiest I’ve ever done, including connecting them to the 10GigE storage network. The majority of our apps come from Adobe Create Cloud, the Mac App Store, or FxFactory (for plug-ins). Except for a few other installers, there was largely no need to track down installers, activation information, etc. for a zillion small apps and plug-ins. This made it a breeze and is certainly part of the attraction of the Mac ecosystem. The iMac Pro’s all-in-one design limits the required peripherals, which also contributes to a faster installation. Naturally, I can’t tell anyone if this is the right machine for them, but so far, the investment does look like the correct choice for this shop’s needs.

(Updated 6/22/18)

Here are two additional impressions by working editors: Thomas Grove Carter and Ben Balser. Also a very comprehensive review from AppleInsider.

©2018 Oliver Peters