Premiere Pro Multicam Editing

Over the years, a lot of the projects that I’ve edited have been based on real-person interviews. This includes documentaries, commercials, and corporate video. As the cost of camera gear has come down and DSLRs became capable of delivering quality video, interview-based production now almost always utilizes multiple cameras. Directors will typically record these sections with two or more cameras at various tangents to the subject, which makes it easy to edit for content without visible jump-cuts (hopefully). In addition, if they also shoot in 4K for an HD delivery, then you have the additional ability to cleanly punch-in for even more framing options.

While having a specific multicam feature in your NLE isn’t required for cutting these types of productions, it sure speeds up the process. Under the best of circumstances, you can play the sequence in real-time and cut between camera angles in the multicam viewer, much like a director calls camera switches in a live telecast. Since you are working within an NLE, you can also make these camera angle cuts at a slower or faster pace and, of course, trim the cuts for greater timing precision. Premiere Pro is my primary NLE these days and its multi-camera editing routines are a joy to use.

Prepping for multi-camera

Synchronization is the main requirement for productive multicam. That starts at the time of the original recording. You can either sync by common timecode, common audio, or a marked in-point.

Ideally, your production crew should use a Lockit Sync Box to generate timecode and sync to all cameras and any external sound recorder. That will only work with professional products, not DSLRs. Lacking that, the next best thing is old school – a common slate with a clap-stick or even just your subject clapping hands at the start, while in view on all cameras. This will allow the editor to mark a common in-point.

The last sync method is to match the common audio across all sources. Of course, that only works if the production crew has supplied quality audio to all cameras and external recorders. It has to be at least good enough so that the human editor and/or the audio analysis of the software can discern a match. Sometimes this method will suffer from a minor amount of delay – either, because of the inherent offset of the audio recording circuitry within the camera electronics – or, because an onboard camera mic was used and the distance to the subject results in a slight delay, compared to a lav mic on the subject.

In addition to synchronization, you obviously need to record high-quality audio. This can be a mixer feed or direct mic input to one or all of the camera tracks, or to a separate external audio recorder. A typical set-up is to feed a lav and a boom mic signal to audio input channels 1 and 2 of the camera. When a mixer and an external recorder are used, the sound recordist will often also record a mix. Another option, though not as desirable, is to record individual microphone signals onto different cameras. The reason this isn’t preferred, is that sometimes when these two sources are mixed in post (rather than only one source used at a time), audio phasing can occur.

Synching in Premiere Pro

To synchronize multicam clips in Premiere Pro, simply select the matching sources in the browser/bin, right-click, and choose “Create New Multi-Camera Source Sequence”. You will be presented with several options for sync, based on timecode, audio, or marked points. You may also opt to have the clips moved to a “Processed Clips” bin. If synchronization is successful, you’ll then end up with a multicam source clip that you can now cut to a standard sequence.

A multicam source clip is actually a modified, nested sequence. You can open the clip – same as a nested sequence – and make adjustments or apply filters to the clips within.

You can also create multicam clips without going through the aforementioned process. For example, let’s say that none of the three sync methods exist. You have a freewheeling interview with two or more cameras, but only one has any audio. There’s no clap and no common timecode. In fact, if all the cameras were DSLRs, then every clip arbitrarily starts at 00:00:00:00. The way to tackle this is to edit these cameras to separate video tracks of a new sequence. Sync the video by slipping the clips’ positions on the tracks. Select those clips on the timeline and create a nest. Once the nest is created, this can then be turned into a multicam source clip, which enables you to work with the multicam viewer.

One step I follow is to place the multicam source clip onto a sequence and replace the audio with the best original source. The standard multicam routine means that audio is also nested, which is something I dislike. I don’t want all of the camera audio tracks there, even if they are muted. So I will typically match-frame the source until I get back to the original audio that I intend to use, and then overwrite the multicam clip’s audio with the original on this working timeline. On the other hand, if the manual multicam creation method is used, then I would only nest the video tracks, which automatically leaves me with the clean audio that I desire.

Autosequence

One simple approach is to use an additional utility to create multicam sequences, such as Autosequence from software developer VideoToolShed. To use Autosequence, your clips must have matching timecode. First separate all of your clips into separate folders on your media hard drive – A-CAM, B-CAM, SOUND, and so on. Launch Autosequence and set the matching frame rate for your media. Then import each folder of clips separately. If you are using double-system sound you can choose whether or not to include the camera sound. Then generate an XML file.

Now, import the XML file into Premiere Pro. This will import the source media into bins, along with a sequence of clips where each camera is on a separate track. If your clips are broken into consecutive recordings with stops and starts in-between, then each recorded set will appear further down on the same timeline. To turn this sequence into one with multicam clips, just follow my explanation for working with a manual process, described above.

Multicam cutting

At this point, I dupe the sequence(s) and start a reductive process of shaping the interview. I usually don’t worry too much about changing camera angles, until I have the story fleshed out. When you are ready for that, right-click into the viewer, and change the display mode to multicam.

As you play, cut between cameras in the viewer by clicking on the corresponding section of the viewer. The timeline will update to show these on-the-fly edits when you stop playback. Or you can simply “blade” the clip and then right-click that portion of the clip to select the camera to be shown. Remember than any effects or color corrections you apply in the timeline are applicable to that visible angle, but do not follow it. So, if you change your mind and switch to a different angle, the effects and corrections do not change with it. Therefore, adjustments will be required to the effect or correction for that new camera angle.

Once I’m happy with the cutting, I will then go through and make a color correction pass. If the lighting has stayed consistent, I can usually grade each angle for one clip only and then copy that correction and paste it to each instance of that same angle on the timeline. Then repeat the procedure for the other camera angles.

When I’m ready to deliver the final product, I will dupe the sequence and clean it up. This means flattening all multicam clips, cleaning up unused clips on my timeline, deleting empty tracks, and usually, collapsing the clips down to the fewest number of tracks.

©2018 Oliver Peters

Advertisements

Audio Mixing with Premiere Pro

When budgets permit and project needs dictate, I will send my mixes out-of-house to one of a few regular mixers. Typically that means sending them an OMF or AAF to mix in Pro Tools. Then I get the mix and split-tracks back, drop them into my Premiere Pro timeline, and generate master files.

On the other hand, a lot of my work is cutting simple commercials and corporate presentations for in-house use or the web, and these are often less demanding  – 2 to 8 tracks of dialogue, limited sound effects, and music. It’s easy to do the mix inside of the NLE. Bear in mind that I can – and often have – done such a mix in Apple Logic Pro X or Adobe Audition, but the tools inside Premiere Pro are solid enough that I often just keep everything – mix included – inside my editing application. Let’s walk though that process.

Dealing with multiple channels on source clips

Start with your camera files or double-system audio recordings. Depending on the camera model, Premiere Pro will see these source clips as having either stereo (e.g. a Canon C100) or multi-channel mono (e.g. ARRI Alexa) channels. If you recorded a boom mic on channel 1 and a lavaliere mic on channel 2, then these will drop onto your stereo timeline either as two separate mono tracks (Alexa) – or as a single stereo track (C100), with the boom coming out of the left speaker and the lav out of the right. Which one it is will strictly depend on the device used to generate the original recordings.

First, when dual-mic recordings appear as stereo, you have to understand how Premiere Pro deals with stereo sources. Panning in Premiere Pro doesn’t “shift” the audio left, right, or center. Instead, it increases or decreases the relative volume of the left or right half of this stereo field. In our dual-mic scenario, panning the clip or track full left means that we only hear the boom coming out of the left speaker, but nothing out of the right. There are two ways to fix this – either by changing the channel configuration of the source in the browser – or by changing it after the fact in the timeline. Browser changes will not alter the configuration of clips already edited to the timeline. You can change one or more source clips from stereo to dual-mono in the browser, but you can’t make that same type of change to a clip already in your sequence.

Let’s assume that you aren’t going to make any browser changes and instead just want to work in your sequence. If your source clip is treated as dual-mono, then the boom and lav will cut over to track 1 and 2 of your sequence – and the sound will be summed in mono on the output to your speaks. However, if the clip is treated as stereo, then it will only cut over to track 1 of your sequence – and the sound will stay left and right on the output to your speakers. When it’s dual-mono, you can listen to one track versus the other, determine which mic sounds the best, and disable the clip with the other mic. Or you can blend the two using clip volume levels.

If the source clip ends up in the sequence as a stereo clip, then you will want to determine which one of the two mics you want to use for the best sound. To pick only one mic, you will need to change the clip’s audio configuration. When you do that, it’s still a stereo clip, however, both “sides” can be supplied by either one of the two source channels. So, both left and right output will either be the boom or the lav, but not both. If you want to blend both mics together, then you will need to duplicate (option-drag) the audio clip onto an adjacent timeline track, and change the audio channel configuration for both clips. One would be set to the boom for both channels and the other set to only the lav for its two channels. Then adjust clip volume for the two timeline clips.

Configuring your timeline

Like most editors, while I’m working through the stages of rough cutting on the way to an approved final copy, I will have a somewhat messy timeline. I may have multiple music cues on several tracks with only one enabled – just so I can preview alternates for the client. I will have multiple dialogue clips on a few tracks with some disabled, depending on microphone or take options. But when I’m ready to move to the finishing stage, I will duplicate that sequence to create a “final version” and clean that one up. This means getting rid of any disabled clips, collapsing my audio and video clips to the fewest number of tracks, and using Premiere’s track creation/deletion feature to delete all empty tracks – all so I can have the least amount of visual clutter. 

In other blog posts, I’ve discussed working with additional submix buses to create split-track exports; but, for most of these smaller jobs, I will only add one submix bus. (I will explain its purpose in a moment.) Once created, you will need to open the track mixer panel and route the timeline channels from the master to the submix bus and then the output of the submix bus back to the master.

Plug-ins

Premiere Pro CC comes with a nice set of audio plug-ins, which can be augmented with plenty of third-party audio effects filters. I am partial to Waves and iZotope, but these aren’t essential. However, there are several that I do use quite frequently. These three third-party filters will help improve any vocal-heavy piece.

The first two are Vocal Rider and MV2 from Waves and are designed specifically for vocal performances, like voice-overs and interviews. These can be pricey, but Waves has frequent sales, so I was able to pick these up for a fraction of their retail price. Vocal Rider is a real-time, automatic volume adjustment tool. Set the bottom and top parameters and let Vocal Rider do the rest, by automatically pushing the volume up or down on-the-fly. MV2 is similar, but it achieves this through compression on the top and bottom ends of the range. While they operate in a similar fashion, they do produce a different sound. I tend to pick MV2 for voice-overs and Vocal Rider for interviews.

We all know location audio isn’t perfect, which is where my third filter comes in. FxFactory is knows primarily for video plug-ins, but their partnership with Crumplepop has added a nice set of audio filters to their catalog. I find AudioDenoise to be quite helpful and fast in fixing annoying location sounds, like background air conditioning noise. It’s real-time and good-sounding, but like all audio noise reduction, you have to be careful not to overdo it, or everything will sound like it’s underwater.

For my other mix needs, I’ll stick to Premiere’s built-in effects, like EQ, compressors, etc. One that’s useful for music is the stereo imager. If you have a music cue that sounds too monaural, this will let you “expand” the track’s stereo signal so that it is spread more left and right. This often helps when you want the voice-over to cut through the mix a bit better. 

My last plug-in is a broadcast limiter that is placed onto the master bus. I will adjust this tight with a hard limit for broadcast delivery, but much higher (louder allowed) for web files. Be aware that Premiere’s plug-in architecture allows you to have the filter take affect either pre or post-fader. In the case of the master bus, this will also affect the VU display. In other words, if you place a limiter post-fader, then the result will be heard, but not visible through the levels displayed on the VU meters.

Mixing

I have used different mixing strategies over the years with Premiere Pro. I like using the write function of the track mixer to write fader automation. However, I have lately stopped using it – instead going back to manual keyframes within the clips. The reason is probably that my projects tend to get revised often in ways that change timing. Since track automation is based on absolute timeline position, keyframes don’t move when a clip is shifted, like they would when clip-based volume keyframes are used.

Likewise, Adobe has recently added Audition’s ducking for music to Premiere Pro. This uses Adobe’s Sensei artificial intelligence. Unfortunately I don’t find to be “intelligent” enough. Although sometimes it can provide a starting point. For me, it’s simply too coarse and doesn’t intelligently adjust for areas within a music clip that swell or change volume internally. Therefore, I stick with minor manual adjustments to compensate for music changes and to make the vocal parts easy to understand in the mix. Then I will use the track mixer to set overall levels for each track to get the right balance of voice, sound effects, and music.

Once I have a decent balance to my ears, I will temporarily drop the TC Electronic (included with Premiere Pro) Radar loudness plug-in to make sure my mix is CALM-compliant. This is where the submix bus comes in. If I like the overall balance, but I need to bring everything down, it’s an easy matter to simply lower the submix level and remeasure.

Likewise, it’s customary to deliver web versions with louder volume levels than the broadcast mix. Again the submix bus will help, because you cannot raise the volume on the master – only lower it. If you simply want to raise the overall volume of the broadcast mix for web delivery, simply raise the submix fader. Note that when I say louder, I’m NOT talking about slamming the VUs all the way to the top. Typically, a mix that hits -6 is plenty loud for the web. So, for web delivery, I will set a hard limit at -6, but adjust the mix for an average of about -10.

Hopefully this short explanation has provided some insight into mixing within Premiere Pro and will help you make sure that your next project sounds great.

©2018 Oliver Peters

FCPX Color Wheels Take 2

Prior to version 10.4, the color correction tools within Final Cut Pro X were very basic. You could get a lot of work done with the color board, but it just didn’t offer tools competitive with other NLEs – not to mention color plug-ins or a dedicated grading app like DaVinci Resolve. With the release of 10.4, Apple upped the game by adding color wheels and a very nice curves implementation. However, for those of us who have been doing color correction for some time, it quickly became apparent that something wasn’t quite right in the math or color science behind these new FCPX color wheels. I described those anomalies in this January post.

To summarize that post, the color wheels tool seems to have been designed according to the lift/gamma/gain (LGG) correction model. The standard behavior for LGG is evident with a black-to-white gradient image. On a waveform display, this appears as a diagonal line from 0 to 100. If you adjust the highlight control (gain), the line appears to be pinned at the bottom with the higher end pivoting up or down as you shift the slider. Likewise, the shadow control (lift) leaves the line pinned at the top with the bottom half pivoting. The midrange control (gamma) bends the middle section of the line inward or outward, with no affect on the two ends, which stay pinned at 0 and 100, respectively. In addition to luminance value, when you shift the hue offset to an extreme edge – like moving the midrange puck completely to yellow – you should still see some remaining black and white at the two ends of the gradient.

That’s how LGG is supposed to work. In FCPX version 10.4, each color wheel control also altered the levels of everything else. When you adjusted midrange, it also elevated the shadow and highlight ranges. In the hue offset example, shifting the midrange control to full-on yellow tinted the entire image to yellow, leaving no hint of black or white. As a result, the color wheels correction tool was unpredictable and difficult to use, unless you were doing only very minor adjustments. You ended up chasing your tail, because when one correction was made, you’d have to go back and re-adjust one of the other wheels to compensate for the unwanted changes made by the first adjustment.

With the release of FCPX 10.4.1 this April, Apple engineers have changed the way the color wheels tool behaves. Corrections now correspond to the behavior that everyone accepts as standard LGG functionality. In other words, the controls mostly only affect their part of the image without also adjusting all other levels. This means that the shadows (lift) control adjusts the bottom, highlights (gain) will adjust the top end, and midrange (gamma) will lighten or darken the middle portion of the image. Likewise, hue offsets don’t completely contaminate the entire image.

One important thing to note is that existing FCPX Libraries created or promoted under 10.4 will now be promoted again when opened in 10.4.1. In order that your color wheel corrections don’t change to something unexpected when promoted, Projects in these Libraries will behave according to the previous FCPX 10.4 color model. This means that the look of clips where color wheels were used – and their color wheel values – haven’t changed. More importantly, the behavior of the wheels when inside those Libraries will also be according to the “old” way, should you make any further corrections. The new color wheels behavior will only begin within new Libraries created under 10.4.1.

These images clarify how the 10.4.1 adjustments now work (click to see enlarged and expanded views).

©2018 Oliver Peters

Viva Las Vegas – NAB 2018

As more and more folks get all of their information through internet sources, the running question is whether or not trade shows still have value. A show like the annual NAB (National Association of Broadcasters) Show in Las Vegas is both fun and grueling, typified by sensory overload and folks in business attire with sneakers. Although some announcements are made before the exhibits officially open – and nearly all are pretty widely known before the week ends – there still is nothing quite like being there in person.

For some, other shows have taken the place of NAB. The annual HPA Tech Retreat in the Palm Springs area is a gathering of technical specialists, researchers, and creatives that many consider the TED Talks for our industry. For others, the Cine Gear Expo in LA is the prime showcase for grip, lighting, and camera offerings. RED Camera has focused on Cine Gear instead of NAB for the last couple of years. And then, of course, there’s IBC in Amsterdam – the more humane version of NAB in a more pleasant setting. But for me, NAB is still the main event.

First of all, the NAB Show isn’t merely about the exhibit floor at the sprawling Las Vegas Convention Center. Actual NAB members can attend various sessions and workshops related to broadcasting and regulations. There are countless sidebar events specific to various parts of the industry. For editors that includes Avid Connect – a two-day series of Avid presentations in the weekend leading into NAB; Post Production World – a series of workshops, training sessions, and presentations managed by Future Media Concepts; as well as a number of keynote presentations and artist gatherings, including SuperMeet, FCPexchange, and the FCPX Guru Gathering. These are places where you’ll rub shoulders with some well-known editors, colorists, artists, and mixers, learn about new technologies like HDR (high dynamic range imagery), and occasionally see some new product features from vendors who might not officially be on the show floor with a booth, like Apple.

One of the biggest benefits I find in going to NAB is simply walking the floor, checking out the companies and products who might not get a lot of attention. These newcomers often have the most innovative technologies and it’s these new things that you find, which were never on the radar prior to that week.

The second benefit is connection. I meet up again in person with friends that I’ve made over the years – both other users, as well as vendors. Often it’s a chance to meet people that you might only know through the internet (forums, blogs, etc.) and to get to know them just a bit better. A bit more of that might make the internet more friendly, too!

Here are some of my random thoughts and observations from Las Vegas.

__________________________________

Editing hardware and software – four As and a B

Apple uncharacteristically pre-announced their new features just prior to the show, culminating with App Store availability on Monday when the NAB exhibits opened. This includes new Final Cut Pro X/Motion/Compressor updates and the official number of 2.5 million FCPX users. That’s a growth of 500,000 users in 2017, the biggest year to date for Final Cut. The key new feature in FCPX is a captioning function to author, edit, and export both closed and embedded (open) captions. There aren’t many great solutions for captioning and the best to date have been expensive. I found that the Apple approach was now the best and easiest to use that I’ve seen. It’s well-designed and should save time and money for those who need to create captions for their productions – even if you are using another brand of NLE. Best of all, if you own FCPX, you already have that feature. When you don’t have a script to start out, then manual or automatic transcription is required as a starting point. There is now a tie-in between Speedscriber (also updated this week) and FCPX that will expedite the speech-to-text function.

The second part of Apple’s announcement was the introduction of a new camera raw codec family – ProResRAW and ProResRAW HQ. These are acquisition codecs designed to record the raw sensor data from Bayer-pattern sensors (prior to debayering the signal into RGB information) and make that available in post, just like RED’s REDCODE RAW or CinemaDNG. Since this is an acquisition codec and NOT a post or intermediate codec, it requires a partnership on the production side of the equation. Initially this includes Atomos and DJI. Atomos supplies an external recorder, which can record the raw output from various cameras that offer the ability to record raw data externally. This currently includes their Shogun Inferno and Sumo 19 models. As this is camera-specific, Atomos must then create the correct profile by camera to remap that sensor data into ProResRAW. At the show, this included several Canon, Sony, and Panasonic cameras. DJI does this in-camera on the Inspire 2.

The advantage with FCPX, is that ProResRAW is optimized for post, thus allowing for more streams in real-time. ProResRAW data rates (variable) fall between that of ProRes and ProResHQ, while the less compressed ProResRAW HQ rates are between ProRes HQ and ProRes 4444. It’s very early with this new codec, so additional camera and post vendors will likely add ProResRAW support over the coming year. It is currently unknown whether or not any other NLEs can support ProResRAW decode and playback yet.

As always, the Avid booth was quite crowded and, from what I heard, Avid Connect was well attended with enthused Avid users. The Avid offerings are quite broad and hard to encapsulate into any single blog post. Most, these days, are very enterprise-centric. But this year, with a new CEO at the helm, Avid’s creative tools have been reorganized into three strata – First, standard, and Ultimate. This applies to Sibelius, Pro Tools, and Media Composer. In the case of Media Composer, there’s Media Composer | First – a fully functioning free version, with minimal restrictions; Media Composer; and Media Composer | Ultimate – includes all options, such as PhraseFind, ScriptSync, NewsCutter, and Symphony. The big difference is that project sharing has been decoupled from Media Composer. This means that if you get the “standard” version (just named Media Composer) it will not be enabled for collaboration on a shared storage network. That will require Media Composer | Ultimate. So Media Composer (standard) is designed for the individual editor. There is also a new subscription pricing structure, which places Media Composer at about the same annual cost as Adobe Premiere Pro CC (single app license). The push is clearly towards subscription, however, you can still purchase and/or maintain support for perpetual licenses, but it’s a little harder to find that info on Avid’s store website.

Though not as big news, Avid is also launching the Avid DNxID capture/export unit. It is custom-designed by Blackmagic Design for Avid and uses a small form factor. It was created for file-base acquisition, supports 4K, and includes embedded DNx codecs for onboard encoding. Connections are via component analog, HDMI, as well as an SD card slot.

The traffic around Adobe’s booth was thick the entire week. The booth featured interesting demos that were front and center in the middle of one of the South Hall’s main thoroughfares, generally creating a bit of a bottleneck. The newest Creative Cloud updates had preceded the show, but were certainly new to anyone not already using the Adobe apps. Big news for Premiere Pro users was the addition of automatic ducking that was brought over from Audition, and a new shot matching function within the Lumetri color panel. Both are examples of Adobe’s use of their Sensei AI technology. Not to be left out, Audition can now also directly open sequences from Premiere Pro. Character Animator had been in beta form, but is now a full-fledged CC product. And for puppet control Adobe also introduced the Advanced Puppet Engine for After Effects. This is a deformation tool to better bend, twist, and control elements.

Of course when it comes to NLEs, the biggest buzz has been over Blackmagic Design’s DaVinci Resolve 15. The company has an extensive track record of buying up older products whose companies weren’t doing so well, reinvigorating the design, reducing the cost, and breathing new life into them – often to a new, wider customer base. This is no more evident than Resolve, which has now grown from a leading color correction system to a powerful, all-in-one edit/mix/effects/color solution. We had previously seen the integration of the Fairlight audio mixing engine. This year Fusion visual effects were added. As before, each one of these disparate tools appears on its own page with a specific UI optimized for that task.

A number of folks have quipped that someone had finally resurrected Avid DS. Although all-in-ones like DS and Smoke haven’t been hugely successful in the past, Resolve’s price point is considerably more attractive. The Fusion integration means that you now have a subset of Fusion running inside of Resolve. This is a node-based compositor, which makes it easy for a Resolve user to understand, since it, too, already uses nodes in the color page. At least for now, Blackmagic Design intends to also maintain a standalone version of Fusion, which will offer more functions for visual effects compositing. Resolve also gained new editorial features, including tabbed sequences, a pancake timeline view, captioning, and improvements in the Fairlight audio page.

Other Blackmagic Design news includes updates to their various mini-converters, updates to the Cintel Scanner, and the announcement of a 4K Pocket Cinema Camera (due in September). They have also redesigned and modularized the Fairlight console mixing panels. These are now more cost-effective to manufacture and can be combined in various configurations.

This was the year for a number of milestone anniversaries, such as the 100th for Panasonic and the 25th for AJA. There were a lot of new product announcements at the AJA booth, but a big one was the push for more OpenGear-compatible cards. OpenGear is an open source hardware rack standard that was developed by Ross and embraced by many manufacturers. You can purchase any OpenGear version of a manufacturer’s product and then mix and match a variety of OpenGear cards into any OpenGear rack enclosure. AJA’s cards also offer Dashboard support, which is a software tool to configure and control the cards. There are new KONA SDI and HDMI cards, HDR support in the IO 4K Plus, and HDR capture and playback with the KiPro Ultra Plus.

HDR

It’s fair to say that we are all learning about HDR, but from what I observed on the floor, AJA is one of the only companies with a number of hardware product offerings that will allow you to handle HDR. This is thanks to their partnership with ColorFront, who is handling the color science in these products. This includes the FS | HDR – an up/down/cross, SDR/HDR synchronizer/converter. It also includes support for the Tangent Element Kb panel. The FS | HDR was a tech preview last year, but a product now. This year the tech preview product is the HDR Image Analyzer, which offers waveform and histogram monitoring at up to 4K/60fps.

Speaking of HDR (high dynamic range) and SDR (standard dynamic range), I had a chance to sit in on Robbie Carman’s (colorist at DC Color, Mixing Light) Post Production World HDR overview. Carman has graded numerous HDR projects and from his HDR presentation – coupled with exhibits on the floor – it’s quite clear that HDR is the wild, wild west right now. There is much confusion about color space and dynamic range, not to mention what current hardware is capable of versus the maximums expressed in the tech standards. For example, the BT 2020 spec doesn’t inherently mean that the image is HDR. Or the fact that you must be working in 4K to also have HDR and the set must accept the HDMI 2.0 standard.

High dynamic range grading absolutely requires HDR-compatible hardware, such as the proper i/o device and a display with the ability to receive metadata that turns on and sets its target HDR values. This means investing in a device like AJA’s IO 4K Plus or Blackmagic’s UltraStudio 4K Extreme 3. It also means purchasing a true grading monitor costing tens of thousands of dollars, like one from Sony, Canon, or Flanders. You CANNOT properly grade HDR based on the image of ANY computer display. So while the latest version of FCPX can handle HDR, and an iMac Pro screen features a high nits rating, you cannot rely on this screen to see proper HDR.

LG was a sponsor of the show and LG displays were visible in many of the exhibits. Many of their newest products qualify at the minimum HDR spec, but for the most part, the images shown on the floor were simply bright and not HDR – no matter what the sales reps in the booths were saying.

One interesting fact that Carman pointed out was that HDR displays cannot be driven across the full screen at the highest value. You cannot display a full screen of white at 1,000 nits on a 1,000 nits display without causing damage. Therefore, automatic gain adjustments are used in the set’s electronics to dim the screen. Only a smaller percentage of the image (20% maybe?) can be driven at full value before dimming occurs. Another point Carman made was that standard lift/gamma/gain controls may be too coarse to grade HDR images with finesse. His preference is to use Resolve’s log grading controls, because you can make more precise adjustments to highlight and shadow values.

Cameras

I’m not a camera guy, but there was notable camera news at the show. Many folks really like the Panasonic colorimetry for which the Varicam products are known. For people who want a full-featured camera in a small form factor, look no further than the Panasonics AU-EVA-1. It’s a 4K, Super35, handheld cinema camera featuring dual ISOs. Panasonic claims 14 stops of latitude. It will take EF lenses and can output camera raw data. When paired with an Atmos recorder it will be able to record ProResRAW.

Another new camera is Canon’s EOS C700 FF. This is a new full-frame model in both EF and PL lens mount versions. As with the standard C700, this is a 4K, Super35 cinema camera that records ProRes or X-AVC at up to 4K resolution onboard to CFast cards. The full-frame sensor offers higher resolution and a shallower depth of field.

Storage

Storage is of interest to many. As costs come down, collaboration is easier than ever. The direct-attached vendors, like G-Tech, LaCie, OWC, Promise, and others were all there with new products. So were the traditional shared storage vendors like Avid, Facilis, Tiger, 1 Beyond, and EditShare. But three of the newer companies had my interest.

In my editing day job, I work extensively with QNAP, which currently offers the best price/performance ratio of any system. It’s reliable, cost-effective, and provides reasonable JKL response cutting HD media with Premiere Pro in a shared editing installation. But it’s not the most responsive and it struggles with 4K media, in spite of plenty of bandwidth  – especially when the editors are all banging away. This has me looking at both Lumaforge and OpenDrives.

Lumaforge is known to many of the Final Cut Pro X editors, because the developers have optimized the system for FCPX and have had early successes with many key installations. Since then they have also pushed into more Premiere-based installations. Because these units are engineered for video-centric facilities, as opposed to data-centric, they promise a better shared storage, video editing experience.

Likewise, OpenDrives made its name as the provider for high-profile film and TV projects cut on Premiere Pro. Last year they came to the show with their highest performance, all-SSD systems. These units are pricey and, therefore, don’t have a broad appeal. This year they brought a few of the systems that are more applicable to a broader user base. These include spinning disk and hybrid products. All are truly optimized for Premiere Pro.

The cloud

In other storage news, “the cloud” garners a ton of interest. The biggest vendors are Microsoft, Google, IBM, and Amazon. While each of these offers relatively easy ways to use cloud-based services for back-up and archiving, if you want a full cloud-based installation for all of your media needs, then actual off-the-shelf solutions are not readily available. The truth of the matter is that each of these companies offers APIs, which are then handed off to other vendors – often for totally custom solutions.

Avid and Sony seem to have the most complete offerings, with Sony Ci being the best one-size-fits-all answer for customer-facing services. Of course, if review-and-approval is your only need, then Frame.io leads and will have new features rolled out during the year. IBM/Aspera is a great option for standard archiving, because fast Aspera up and down transfers are included. You get your choice of IBM or other (Google, Amazon, etc.) cloud storage. They even offer a trial period using IBM storage for 30 days at up to 100GB free. Backblaze is a competing archive solution with many partnering applications. For example, you can tie it in with Archiware’s P5 Suite of tools for back-up, archiving, and server synchronization to the cloud.

Naturally, when you talk of the “cloud”, many people interpret that to mean software that runs in the cloud – SaaS (software as a service). In most cases, that is nowhere close to happening. However, the exception is The Foundry, which was showing Athera, a suite of its virtualized applications, like Nuke, running on the Google Cloud Platform. They demo’ed it running inside the Chrome browser, thanks to this partnership with Google. The Foundry had a pod in the Google partners pavilion.

In short, you can connect to the internet with a laptop, activate a license of the tool or tools that you need, and then all media, processing, and rendering is handled in the cloud, using Google’s services and hardware. Since all of this happens on Google’s servers, only an updated UI image needs to be pushed back to the connected computer’s display. This concept is ideal for the visual effects world, where the work is generally done on an individual shot basis without a lot of media being moved in real-time. The target is the Nuke-centric shop that may need to add on a few freelancers quickly, and who may or may not be able to work on-premises.

Interesting newcomers

As I mentioned at the beginning, part of the joy of NAB is discovering the small vendors who seek out NAB to make their mark. One example this year is Lumberjack Systems, a venture by Philip Hodgetts and Greg Clarke of Intelligent Assistance. They were in the Lumaforge suite demonstrating Lumberjack Builder, which is a text-based NLE. In the simplest of explanations, your transcription or scripted text is connected to media. As you re-arrange or trim the text, the associated picture is edited accordingly. Newly-written text for voiceovers turns into spoken word media courtesy of the computer’s internal audio system and system voice. Once your text-based rough cut is complete, an FCPXML is sent to Final Cut Pro X, for further finesse and final editing.

Another new vendor I encountered was Quine, co-founded by Norwegian DoP Grunleik Groven. Their QuineBox IoT device attaches to the back of a camera, where it can record and upload “conformable” dailies (ProRes, DNxHD) to your SAN, as well as proxies to the cloud via its internal wi-fi system. Script notes can also be incorporated. The unit has already been battle-test on the Netflix/NRK production of “Norsemen”.

Closing thoughts

It’s always interesting to see, year over year, which companies are not at the show. This isn’t necessarily indicative of a company’s health, but can signal a change in their direction or that of the industry. Sometimes companies opt for smaller suites at an area hotel in lieu of the show floor (Autodesk). Or they are a smaller part of a reseller or partner’s booth (RED). But often, they are simply gone. For instance, in past years drones were all the rage, with a lot of different manufacturers exhibiting. DJI has largely captured that market for both vehicles and camera systems. While there were a few other drone vendors besides DJI, GoPro and Freefly weren’t at the show at all.

Another surprise change for me was the absence of SAM (Snell Advanced Media) – the hybrid company formed out of Snell & Wilcox and Quantel. SAM products are now part of Grass Valley, which, in turn, is owned by Belden (the cable manufacturer). Separate Snell products appear to have been absorbed into the broader Grass Valley product line. Quantel’s Go and Rio editors continue in Grass Valley’s editing line, alongside Edius – as simple, middle, and advanced NLE products. A bit sad actually. And very ironic. Here we are in the world of software and file-based video, but the company that still has money to make acquisitions is the one with a heavy investment in copper (I know, not just copper, but you get the point).

Speaking of “putting a fork in it”, I would have to say that stereo 3D and 360 VR are pretty much dead in the film and video space. I understand that there is a market – potentially quite large – in gaming, education, simulation, engineering, training, etc. But for more traditional entertainment projects, it’s just not there. Vendors were down to a few, and even though the leading NLEs have ways of working with 360 VR projects, the image quality still looks awful. When you view a 4K image within even the best goggles, the qualitative experience is like watching a 1970s-era TV set from a few inches away. For now, it continues to be a novelty looking for a reason to exist.

A few final points… It’s always fun to see what computers were being used in the booths. Apple is again a clear winner, with plenty of MacBook Pros and iMac Pros all over the LVCC when used for any sort of creative products or demos. eGPUs are of interest, with Sonnet being the main vendor. However, eGPUs are not a solution that solves every problem. For example, you will see more benefit by adding an eGPU to a lesser-powered machine, like a 13” MacBook Pro than one with more horsepower, like an iMac Pro. Each eGPU takes one Thunderbolt 3 bus, so realistically, you are likely to only add one additional eGPU to a computer. None of the NLE vendors could really tell me how much of a boost their application would have with an eGPU. Finally, if you are looking for some great-looking, large, OLED displays that are pretty darned accurate and won’t break the bank, then LG is the place to look.

©2018 Oliver Peters

Blackmagic Design DaVinci Resolve 14

DaVinci Resolve has made its mark as one of the premier color correction applications for the film and video industries. With the introduction of Resolve 14*, it’s clear that Blackmagic Design has set its sights higher. Advanced editing functions and the inclusion of the Fairlight audio engine put Resolve on track to be the industry’s latest all-in-one post-production powerhouse. I’ve reviewed Resolve in the past as a grading application, but my focus here is editing. Right at the start, let me paraphrase the judges on History Channel’s Forged in Fire series – ‘This NLE can cut!’ If you have no prior allegiances to other editing platforms, then using Resolve as your NLE of choice is a no-brainer.

(*This review was originally written right after the release of Resolve 14 in late 2017.)

DaVinci Resolve 14 comes in two flavors, DaVinci Resolve 14 (free) and DaVinci Resolve Studio ($299). Upgrades have been free to date. It’s the only NLE to support three operating systems: macOS, Windows, and Linux. Mac users also have the option to download Resolve (free) or purchase Resolve Studio through the Apple Mac App Store. These versions are basically the same as those on Blackmagic Design’s website, but with some differences, due to the requirement that App Store software be sandboxed.

Resolve offers the majority of the same features as Resolve Studio. The primary limitations are that exports are capped at UltraHD (3840×2160), and that features such as stereo3D, lens distortion correction, noise reduction, and collaboration require Resolve Studio. Regardless of the version, Resolve is a very deep application that’s been battle-tested through years of high-pressure, enterprise-grade deployment. But is that enough to sway loyal Final Cut Pro X, Premiere Pro, or Media Composer editors to switch? There’s certainly interest, as Stephen Mirrione pointed out in my recent Suburbicon interview, so I wouldn’t be surprised to hear news of a TV show or small feature film being edited with Resolve in the coming year.

The all-in-one concept

Creating a single application that’s good at many different tasks can be daunting and more often than not has been unsuccessful. In the case of Resolve, Blackmagic Design has taken a modal approach by splitting the interface into five pages: Media (ingest/import), Edit, Color, Fairlight (audio mixing), and Deliver (export/output).

The workflow follows a logical, left-to-right path through these five stages of post-production. With each page/mode change, the user interface is reconfigured to best suit the task at hand. The Edit page sports a standard source/record/bin/track layout similar to Media Composer, Premiere Pro, or Final Cut Pro 7. Color switches to the familiar tools and nodes of DaVinci color correction. The Fairlight mixing page isn’t just a mimic of the Fairlight interface. The engineers completely swapped out the audio guts of Resolve and replaced it with the Fairlight audio engine.

Not only is the interface that of a respected DAW, but it is also possible to expand your system with Fairlight’s audio acceleration card, as well as add a Fairlight mixing desk. This means that in a multi-suite facility, you can have task-specific rooms optimized for editing, color grading, or audio mixing – all using the exact same software application without the need for roundtrips or other list translations.

But does it work?

I put both versions of Resolve 14 through the paces and the application is reasonably solid, given how much has changed from version 12 (there was no version 13). General media management, editing, and audio processing is top notch. If you want audio/video output, Blackmagic Design Decklink or UltraStudio hardware is required. There is also a Cinema viewer function for fullscreen viewing on your computer display. With dual displays, the edit interface can be on one along with fullscreen video on the other.

The Fairlight mode will likely require a bit of rethinking by editors used to mixing audio in other NLEs, since it uses a DAW-style interface. Many well-known physical mixing consoles, like those from Solid State Logic, feature channel strips with built-in EQs, compressors, etc. That’s how Fairlight treats these software channels or tracks. Each track can have its own combination of Fairlight audio processing functions. Stick with those and you’ll be happy, although other audio filters on your computer, like Apple AU plug-ins, are accessible. Mixing and audio editing is good with subframe accuracy and the 14.1 update added linked groups to lock faders together. The pace of Fairlight integration was quite fast, but it’s still a bit rough. I encountered a number of application crashes only in the Fairlight page, while scrubbing audio.

Whether or not you like the editing is more a function of personal style and preference. The user interface design is a lot like Final Cut Pro X, except with bins and tracks. Interface windows, tabs, and panels can be opened or pulled down into various screen configurations, but you don’t have freeform control over size and position. Clearly Premiere Pro is king in that department. Some design choices aren’t consistent. For example, you can’t enable a single-viewer layout when using two displays.

Multicam editing is solid, but I experienced a small bit of latency in the viewer when cutting camera angles on-the-fly. It’s minor and may or may not bother you. You can sync clips by various methods, such as timecode or waveform, but oddly, it seemed to be too lax. In my tests, it would frequently sync clips that it shouldn’t have when a sync relationship didn’t exist.

There are a number of things in Resolve’s design that take getting used to. For example, a Resolve project is locked to the frame rate you picked when that new project was created – same as with Avid. This means you can’t mix sequences with different frame rates within the same project. There are no adjustment layers, although you can fake it in the Color page by using clip and program-based corrections. Color management via LUTs (look-up tables) is much deeper than any other NLE. You can set color management with LUTs to be global, which is best when the project uses only one camera type. Conversely, input LUTs may be applied singly or in a batch to specific cameras in a bin. But, when you do that, the LUT process doesn’t show up in the color correction node (only its result), when you switch to the Color page. On the plus side, real time performance has been improved from previous versions and the built-in effects include filters that you don’t often find in the basic build of other NLEs, like glow and watercolor effects. In addition to great built-in effects, third-party OpenFX packages, like Boris Continuum Complete and Sapphire are also available.

Collaboration

Resolve uses bin-locking like Avid Media Composer. The first editor to open a bin has read/write permission to it. Any other editor can open that same bin in a read-only mode. For example, in a long-form project, separate bins might be organized for Act 1, Act 2, and so on. Different editors can separately work on parts of the film at the same time. Since this all happens in a single database file, it always reflects the most current state of the project.

To set up shared projects, a different PostgreSQL database is required, which is installed through the custom options of the installer. Make sure you are using the most recent version when upgrading Resolve, since the older versions of PostgreSQL are no longer compatible with the newest OS versions. One machine on the network hosts this database and then other workstations connect to that database to access the Resolve projects. Only that host machine needs to have PostgreSQL software installed on it. The process of adding and connecting shared databases has been improved and simplified with the release of 14.1.1 (and later), which now includes an additional server set-up utility application.

In testing collaboration features, I initially ran into set-up problems. These were eventually fixed when I disabled the macOS firewall on the host machine, which was blocking access from the other connected Macs to its shared database. This took some back and forth with Blackmagic Design’s helpful support engineers until we figured out why I was getting the connection errors. Since I had to return the additional “dongle” (USB license key) before this was fixed, I wasn’t able to test two editors simultaneously editing within the same open project. However, the ability to open any shared project from any qualified computer on the network was just fine.

DaVinci Resolve Micro Panel

I also tested the smaller, bus-powered DaVinci Resolve Micro panel. The Micro panel is just the right size for an editor or a DIT on set. It’s smaller than the Mini (tested previously in another review), because it doesn’t have the upward slanting portion in the back; therefore, it’s a better physical fit between your computer keyboard and display. You don’t have to shuffle desk real estate between tools, as you do with the Micro panel. In spite of not having the extra controls and LCD displays of the Mini, the Micro panel combines most of the control functions you need for fast grading. If you are an editor who is heavy into color correction, then this is a must-have for Resolve.

I took an instant liking to the Micro. You can use both hands to quickly and intuitively work the trackballs and knob controls, making for faster and better correction. It’s tactile, with next and previous clip buttons to quickly advance through the timeline, so you can keep your eyes on the screen. I grade in Resolve, Avid, Premiere Pro, and Final Cut Pro X, and all of that is with a mouse. Using the panel easily resulted in faster grading by a factor at least 3X or 4X. I also achieved better-looking corrections with fewer steps or processes than grading in any of these other applications.

Conclusion

Overall, there’s a lot to love about Resolve, in spite of a few rough edges. In general, it seems more stable under macOS Sierra than with High Sierra. If you use Resolve on a Mac, then you are stuck dealing with Apple’s platform changes. For example, recent Macs that use an Nvidia GPU are at a disadvantage under High Sierra, because Nvidia is just now developing drivers for CUDA under this OS. I experienced a number of crashes running Resolve 14 on my 2014 MacBook Pro until I manually changed the Resolve hardware configuration under Resolve’s preferences from CUDA to using Metal. When I installed what was supposed to be the newest CUDA driver, I still received a prompt that no CUDA-compliant card was present. But, it’s working fine using Metal. Macs with AMD GPUs should be fine.

Resolve 14 is a dense tool, with a lot of depth in various menus, which some may find daunting. This review would be a lot longer if I went even deeper into the many specific features of this application. Yet, it is easy for new users to hit the ground running and then learn as they go. For many, this is their mythical “Final Cut Pro 8”. In any case, DaVinci Resolve 14 is the best incarnation of the all-in-one concept to date. If you add Blackmagic Design’s Fusion visual effects software into the mix (also available in free and paid versions), the result is a combination that’s tough to beat at any price.

Blackmagic Design’s engineers have shown impressive development over a very short period of time, so I fully expect Blackmagic to give the three “A” companies a run for their money. Even if you use another tool as your main editing application, Resolve is a great addition to the toolbox. Using it becomes addictive. Give it a try and you might just find it becomes your first choice.

©2017, 2018 Oliver Peters

Telestream Switch 4

Once Apple pulled the plug on QuickTime Player Pro 7, the industry started to look elsewhere for an all-purpose media tool that could facilitate the proper playback, inspection, and encoding of media files. For many, that new multipurpose application has become Telestream’s Switch, now in version 4. Telestream offers a range of desktop and enterprise media solutions, including Vantage, ScreenFlow, Flip4Mac, Episode, and others. Switch fills the role of a media player with added post-production capabilities, going far beyond other players, such as QuickTime Player or VLC.

Switch is offered in three versions: the basic Switch Player ($9.99), Switch Plus ($199) and Switch Pro ($499). Pricing for Plus and Pro covers the first year of support, which includes upgrades and assistance. There is also a free demo version with watermarking. All versions are available for both macOS (10.11-13) and Windows (7-10).

Playback support

The first attraction to Switch is its wide support of “consumer”, broadcast, and professional media formats and codecs. For Mac users, some of these are supported in QuickTime Player, too, but require a conversion step before you can play them. Not so with Switch. Of particular importance to editors will be the MPEG-2 and MXF variations. Some formats do require an upgrade to at least the Plus version, so check Telestream’s tech specs for specifics.

One area where Switch shines is file inspection. This has made it to the go-to quality assurance tool at many facilities. File metadata is exposed, along with proper display and reporting of interlaced video. It supports JKL transport control and frame advance using the arrow keys. Since closed captioning is important for all terrestrial and set-top channel broadcasters, you must have a way to check embedded captions. In the case of QuickTime Player, it will only display a single track of embedded captions and then, only the lower track. So, for example, if you have a file with both English and Spanish captions on CC1 and CC3, QuickTime Player will only display the English captions and not even let you verify that more captions are present. With Switch Plus and Pro, the full range of embedded channels are presented and you have the ability to do a check on any of the caption tracks.

Switch Plus likely covers the needs of most users; but Pro adds additional functionality, such as metering for multi-channel audio and loudness compliance. Pro also lets you open up to sixteen different files for comparison. It is the only version that supports external monitoring through Blackmagic Design or AJA i/o hardware. Finally, Pro lets you QC DPP (Digital Production Partnership) files from the desktop and display AS-11 MXF metadata.

Content encoding

Beyond these powerful player and inspection functions, Switch Plus and Pro are also full-fledged media encoders. You can change metadata, reorder audio channels, and export a new media file in various formats. Files can be trimmed, cropped, and/or resized in the export. Do you have a ProRes master file and need to generate an MPEG-2 Transport Stream file for broadcast? No problem.

I had a situation where I received a closed caption master file of a commercial from the captioning facility. It needed to have the ends of the file (slate and black) trimmed to meet the delivery specs. Normally when you edit or convert a file with embedded captioning, it will break the captions on the new file. Not so with Switch. I simply set the in and out points, set my encode specs to video pass-through, and generated the new file. The encode (essentially a file copy in this case) was lightning fast and the captions stayed intact.

Switch Plus and Pro include publishing presets for Vimeo, YouTube, and Facebook. In addition, the Pro version also lets you create an iTunes Store package, necessary to be compliant when distributing via the iTunes Store. Switch is a cross-platform application, but ProRes encoding support is limited to the Mac version. However, the iTunes Store package feature is the exception. ProRes asset creation is available to Windows users when creating the .itms files used by the iTunes Store.

Although Switch Plus or Pro might seem pricy to some when they compare these to Apple Compressor or Adobe Media Encoder; however, the other encoders can’t do the precision media functions that Switch offers. Telestream has built Switch to be an industrial-grade media tool that covers a host of needs in a package that’s easy for anyone to understand. If you liked QuickTime Player Pro 7, then Switch has become its 21st century successor.

Originally written for RedShark News.

©2018 Oliver Peters

What’s up with Final Cut’s Color Wheels?

NOTE: The information presented here has been superseded by the release of FCPX 10.4.1 in April 2018. With that release the color wheels model has been changed. Please read the linked blog post for updated information.

Apple Final Cut Pro X 10.4 introduced new, advanced color correction tools to this editing application, including color wheels, curves, and hue vs. saturation curves. These are tools that users of other NLEs have enjoyed for some time – and, which were part of Final Cut Studio (FCP 7, Color). Like others, my first reaction was, “Super! They’ve added some nice advanced tools, which will improve the use of FCPX for higher-end users.” But, as I started to primarily use the Color Wheels with real correction work, I quickly realized that something wasn’t quite right in how they operated. Or at least, they didn’t work in a way that we’ve come to understand.

In trying to figure it out, I reached out to other industry pros and developers for their thoughts. Naturally this led to some spirited discussions at forums like those at Creative COW. However, other editors have noticed the same problems, so you can also find threads in the Facebook FCPX group and at FCP.co. It is certainly easy to characterize this as just another internet kerfuffle, surrounding Apple’s “think different” approaches to FCPX. But those arguments fall flat when you actually try to use the tools as intended.

The FCPX Color Wheels panel includes four wheels – Master, Shadows, Midtones, and Highlights. The puck in the center of each wheel is a hue offset control to push hues in the direction that you move the puck. The slider to the right of the wheel controls the brightness of that range. The left slider controls the saturation. One of the main issues is that when you adjust luminance using one of these controls, the affected range is too broad. Specifically, in the case of the Midtones control, as you adjust the luminance slider up or down, you are affecting most of the image and not just the midrange levels. This is not the way this type of control normally works in other tools, and in fact, it’s not how FCPX’s Color Board controls work either.

“What’s the big deal?” you might ask. Fair enough. I see two operational issues. The first is that to properly grade the image using the Color Wheels, you end up having to go back-and-forth a lot between wheels, to counteract the changes made by one control with another. The second is that using the Midtones slider tends to drive highlights above 100 IRE, where they will be clipped if any broadcast limiting is used. This doesn’t happen with other color tools, notably Apple’s own Color Board.

A lot of the discussion focuses on luma levels and specifically the Midtones slider, since it’s easy to see the issue there. However, other controls are also affected, but that’s too much to dissect in a single post. Throughout this post, be sure to click on the images to see the full view. I have presented various samples against each other and you will only get the full understanding if you open the thumbnail (which is small but also cropped) to the full image. I have compared the effect using five different tools – the Color Board, the Color Wheels, a color corrector plug-in that I built as a Motion template using Motion effects, Rubber Monkey Software FilmConvert (the wheels portion only), and finally, the Adobe Lumetri controls in Premiere Pro.

I am using three different test images – a black-to-white ramp, a test pattern, and a demo video image. The ramp without correction will appear as a diagonal line (0-100 IRE) on the scope, which makes it easy to analyze what’s happening. The video image has definite shadow and highlight areas, which lets us see how these controls work in the real world. For example, if you want to brighten the area of the shot where the man is in the shadows, but don’t want to make the highlights any brighter, this would normally be done using a Midtones control. Be aware that these various tools certainly aren’t calibrated the same way and some have a greater range of control than others. The weakest of these is FilmConvert’s wheels, since this plug-in has additional level controls in other parts of its interface.

Color science models

In the various forum threads, the argument is made that Apple is simply using a different color science method or a different weighing of some existing models. That’s certainly possible, since not all color correctors are built the same way. The most common approaches are Lift/Gamma/Gain and Shadows/Mids/Highlights. Be careful with naming. Just because something uses the terminology of Shadows, Midtones, and Highlights, does not mean that it also uses the SMH color science model. Many tools use the Lift/Gamma/Gain model, but in fact, call the controls shadows (Lift), mids (Gamma), and highlights (Gain). Another term you may run across is Set-up in some correction tools. This is typically used for control of shadows (equal to Lift), but can also function is an offset control that raises the level of the entire image. Avid Symphony employs this solution. Finally, both Symphony and Adobe SpeedGrade use what has been dubbed a 12-way color corrector. Each range is further subdivided into its own subset of shadows, mids, and highlights controls.

An LGG model provides broad control of shadows and highlights, with the midtones control working like a curve that covers the whole range, but with the largest effect in the middle. An SMH model normally divides the levels into three distinct, precisely overlapping ranges. This is much like a three-band audio equalizing filter. A number of the color correctors add a luma range control, which gives the user the ability to change how much of the image a specific range will affect. In other words, how broad is the control of the shadows, mids, or highlights control? This is like a Q control in an audio equalizer, where you change the shape of the envelope at a certain frequency.

Red Giant’s Magic Bullet Looks offers both color correction models with two different tools – the 4-way color corrector (SMH) and the Colorista color corrector (LGG). When you adjust the midrange control of their 4-way, the result is a graceful S-shaped curve to the levels on the waveform.

To study the effect of an LGG-based corrector, test the ramp. The shadows control (Lift) will raise or lower the dark areas of the image without changing the absolute highlights. The diagonal line of the ramp on the waveform essentially pivots, hinged at the 100 IRE point. Conversely, change the highlights control (Gain) pivots the line pinned to 0 IRE (at black). When you adjust the midtones control (Gamma), you create a curve to the line, which stays pinned at 0 and 100 IRE at either end. In this way you are effectively “expanding” or “compressing” the levels in the middle portion of your image without changing the position of your black or white points.

How the various color correction tools react

Looking at the luma control for the Midtones, two things are clear. First, all of these tools are using the LGG color science model. It’s not clear what the Color Wheels are using, but it isn’t SMH, as there is no bulge or S-curve visible in the scope. Second, the Color Wheels quickly drive the image levels into clipping, while the other tools generally keep black and while levels in place. In essence, the Midtones control affects the image more like a master or offset control would, than a typical mids or Gamma control. Yet, clearly Apple’s Color Board controls adhere to the standard LGG model. The concern, of course, is clipping. In the test image of the man walking on the village street, the sunlit building walls on the opposite side of the street will become overexposed and risk being clipped when the Color Wheels are used.

What about color? As a simple test, I next shifted the Midtones puck to the yellow. Bear in mind that the range of each of these controls is different, so you will see varying degrees of yellow intensity. Nevertheless, the way the control should work is that some pure black and white should be preserved at the top and bottom of the video levels. All of these tools maintain that, except for the Color Wheels. There, the entire image is yellow, effectively making the hue offset puck function more like a tint control.

One other issue to note, is that the Color Wheels offer an extraordinarily control range. The hue offset control RGB intensity values go from 0 (center of the wheel) to 1023. However, the puck icon can only go to the rim of the wheel, which it hits at about 200. With a mouse (or numerical entry), you can keep going well past the stop of the wheel icon – five times farther, in fact. The image not only becomes very yellow in this case, but you can easily lose the location of your control, since the GUI position in no longer relevant.

The working theory

The big question is why don’t the Color Wheels conform to established principles, when in fact, the Color Board controls do? Until there is some further clarification from Apple, one possible explanation is with HDR. FCPX 10.4 introduced High Dynamic Range (HDR) features. One of the various HDR standards is Rec. 2020 PQ. In that color space, the 0-100 IRE limitations of Rec. 709 are expanded to 0-10,000 nits. 0-100 nits is roughly the same brightness as we are used to with Rec. 709.

Looking at this image of the man walking along the street – where I’ve attempted to get a pleasing look with all of the tools – you’ll see that the Color Wheels in Rec. 709 don’t react correctly and will drive the highlights into a range to be clipped. However, in the bottom pane, which is the same image in Rec. 2020 PQ color space, the grade looks pretty normal. And, in practice, the Color Wheels controls work more or less the way I would have expected them to work. Yes, the same controls work differently in the different color spaces – properly in 2020 PQ and not in 709.

But why is that the case? I have no answer, but I do have a wild guess. Maybe, just maybe, the Color Wheels were designed for – or intended to only be used for – HDR work. Or maybe there’s conversion or recalibration of the controls that hasn’t taken place yet in this version. If the tool is only calibrated for HDR, then its range and weighing will be completely wrong for Rec. 709 video. If you increase the Midtones luma of the ramp in both Rec. 709 and Rec. 2020 PQ, you’ll see a similar curve. In fact, if you overlay a screen shot of each waveform, placing the full Rec. 709 scope image over the bottom portion of the Rec. 2020 PQ scale, you’ll notice that these sort of align up to about 100 IRE and nits. It’s as if one is simply a slice out of the other.

Regardless of why, this is something where I would hope Apple will provide a white paper or other demonstration of what the best practices will be for using this tool effectively. If it isn’t intentional, and actually is a mistake, then I presume a fix will be forthcoming. In either case, put in your feedback comments to Apple.

A word about HDR

Over the course of testing this tool and this theory, I’ve done a bit of testing with the HDR color spaces in FCPX. If you want to know more about HDR, I would encourage you to check out these contrary blog posts by Stu Maschwitz and Alexis Van Hurkman. I tend to side with Stu’s point-of-view and am not a big fan of HDR.

The way Apple has implemented these features in Final Cut Pro X 10.4 is to allow the user to set and override color spaces. If you set up your project to be Rec. 2020 PQ (and set preferences to “show HDR as raw values”), then the viewer and a/v output (direct from the Mac, not through a hardware i/o device) are effectively dimmed through the Mac’s color profile system. When you grade the image based on the 0-10,000 nits scale, you’ll end up seeing an image that looks pleasing and essentially the same as if you were working in Rec. 709. However – and I cannot over-emphasize this – you are not going to be able to produce an image that’s truly compatible with Dolby Vision and actually look correct as HDR, unless you have the correct AJA i/o hardware and a proper display. And by display, I mean a top-end Dolby, Canon, or Sony unit, costing tens of thousands of dollars.

As I understand the PQ specs, the bulk of the higher range is for the highlights that are normally constrained or clipped in our current video systems. However, that 10,000 nits scale is weighed, so that about 50% of the image value is in the first 100 nits, making it of comparable brightness to the current 100 IRE. The rest of that range is for brighter information, like specular highlights. You don’t necessarily get more brightness in the shadow detail. Therefore, if you are grading a shot in FCPX in a 2020 PQ color space and you only have the computer display to go by, you’ll grade by eye as much as by scope. This means that to get a pleasing image, you will end up making the average appearance of the image brighter than it really should be. When this is viewed on a real HDR monitor, it will be painfully bright. Having a higher-nits computer display, like on the iMac Pro (up to 500 nits), won’t make much difference, unless maybe, you crank the display brightness to its maximum (ouch!).  “Mine goes the 11!”

Right now, HDR is the wild, wild west. If you are smart, you’ll realize that you don’t know what you don’t know. While it’s nice to have these new features in FCPX, they can be very dangerous in the wrong hands.

But that’s another matter. Right now, I just hope Apple (or one of the usual suspects, like Ripple Training, LumaForge, or Larry Jordan) will come out with more elaboration on the Color Wheels.

©2018 Oliver Peters