Telestream Switch 4

Once Apple pulled the plug on QuickTime Player Pro 7, the industry started to look elsewhere for an all-purpose media tool that could facilitate the proper playback, inspection, and encoding of media files. For many, that new multipurpose application has become Telestream’s Switch, now in version 4. Telestream offers a range of desktop and enterprise media solutions, including Vantage, ScreenFlow, Flip4Mac, Episode, and others. Switch fills the role of a media player with added post-production capabilities, going far beyond other players, such as QuickTime Player or VLC.

Switch is offered in three versions: the basic Switch Player ($9.99), Switch Plus ($199) and Switch Pro ($499). Pricing for Plus and Pro covers the first year of support, which includes upgrades and assistance. There is also a free demo version with watermarking. All versions are available for both macOS (10.11-13) and Windows (7-10).

Playback support

The first attraction to Switch is its wide support of “consumer”, broadcast, and professional media formats and codecs. For Mac users, some of these are supported in QuickTime Player, too, but require a conversion step before you can play them. Not so with Switch. Of particular importance to editors will be the MPEG-2 and MXF variations. Some formats do require an upgrade to at least the Plus version, so check Telestream’s tech specs for specifics.

One area where Switch shines is file inspection. This has made it to the go-to quality assurance tool at many facilities. File metadata is exposed, along with proper display and reporting of interlaced video. It supports JKL transport control and frame advance using the arrow keys. Since closed captioning is important for all terrestrial and set-top channel broadcasters, you must have a way to check embedded captions. In the case of QuickTime Player, it will only display a single track of embedded captions and then, only the lower track. So, for example, if you have a file with both English and Spanish captions on CC1 and CC3, QuickTime Player will only display the English captions and not even let you verify that more captions are present. With Switch Plus and Pro, the full range of embedded channels are presented and you have the ability to do a check on any of the caption tracks.

Switch Plus likely covers the needs of most users; but Pro adds additional functionality, such as metering for multi-channel audio and loudness compliance. Pro also lets you open up to sixteen different files for comparison. It is the only version that supports external monitoring through Blackmagic Design or AJA i/o hardware. Finally, Pro lets you QC DPP (Digital Production Partnership) files from the desktop and display AS-11 MXF metadata.

Content encoding

Beyond these powerful player and inspection functions, Switch Plus and Pro are also full-fledged media encoders. You can change metadata, reorder audio channels, and export a new media file in various formats. Files can be trimmed, cropped, and/or resized in the export. Do you have a ProRes master file and need to generate an MPEG-2 Transport Stream file for broadcast? No problem.

I had a situation where I received a closed caption master file of a commercial from the captioning facility. It needed to have the ends of the file (slate and black) trimmed to meet the delivery specs. Normally when you edit or convert a file with embedded captioning, it will break the captions on the new file. Not so with Switch. I simply set the in and out points, set my encode specs to video pass-through, and generated the new file. The encode (essentially a file copy in this case) was lightning fast and the captions stayed intact.

Switch Plus and Pro include publishing presets for Vimeo, YouTube, and Facebook. In addition, the Pro version also lets you create an iTunes Store package, necessary to be compliant when distributing via the iTunes Store. Switch is a cross-platform application, but ProRes encoding support is limited to the Mac version. However, the iTunes Store package feature is the exception. ProRes asset creation is available to Windows users when creating the .itms files used by the iTunes Store.

Although Switch Plus or Pro might seem pricy to some when they compare these to Apple Compressor or Adobe Media Encoder; however, the other encoders can’t do the precision media functions that Switch offers. Telestream has built Switch to be an industrial-grade media tool that covers a host of needs in a package that’s easy for anyone to understand. If you liked QuickTime Player Pro 7, then Switch has become its 21st century successor.

Originally written for RedShark News.

©2018 Oliver Peters

Advertisements

What’s up with Final Cut’s Color Wheels?

NOTE: The information presented here has been superseded by the release of FCPX 10.4.1 in April 2018. With that release the color wheels model has been changed. Please read the linked blog post for updated information.

Apple Final Cut Pro X 10.4 introduced new, advanced color correction tools to this editing application, including color wheels, curves, and hue vs. saturation curves. These are tools that users of other NLEs have enjoyed for some time – and, which were part of Final Cut Studio (FCP 7, Color). Like others, my first reaction was, “Super! They’ve added some nice advanced tools, which will improve the use of FCPX for higher-end users.” But, as I started to primarily use the Color Wheels with real correction work, I quickly realized that something wasn’t quite right in how they operated. Or at least, they didn’t work in a way that we’ve come to understand.

In trying to figure it out, I reached out to other industry pros and developers for their thoughts. Naturally this led to some spirited discussions at forums like those at Creative COW. However, other editors have noticed the same problems, so you can also find threads in the Facebook FCPX group and at FCP.co. It is certainly easy to characterize this as just another internet kerfuffle, surrounding Apple’s “think different” approaches to FCPX. But those arguments fall flat when you actually try to use the tools as intended.

The FCPX Color Wheels panel includes four wheels – Master, Shadows, Midtones, and Highlights. The puck in the center of each wheel is a hue offset control to push hues in the direction that you move the puck. The slider to the right of the wheel controls the brightness of that range. The left slider controls the saturation. One of the main issues is that when you adjust luminance using one of these controls, the affected range is too broad. Specifically, in the case of the Midtones control, as you adjust the luminance slider up or down, you are affecting most of the image and not just the midrange levels. This is not the way this type of control normally works in other tools, and in fact, it’s not how FCPX’s Color Board controls work either.

“What’s the big deal?” you might ask. Fair enough. I see two operational issues. The first is that to properly grade the image using the Color Wheels, you end up having to go back-and-forth a lot between wheels, to counteract the changes made by one control with another. The second is that using the Midtones slider tends to drive highlights above 100 IRE, where they will be clipped if any broadcast limiting is used. This doesn’t happen with other color tools, notably Apple’s own Color Board.

A lot of the discussion focuses on luma levels and specifically the Midtones slider, since it’s easy to see the issue there. However, other controls are also affected, but that’s too much to dissect in a single post. Throughout this post, be sure to click on the images to see the full view. I have presented various samples against each other and you will only get the full understanding if you open the thumbnail (which is small but also cropped) to the full image. I have compared the effect using five different tools – the Color Board, the Color Wheels, a color corrector plug-in that I built as a Motion template using Motion effects, Rubber Monkey Software FilmConvert (the wheels portion only), and finally, the Adobe Lumetri controls in Premiere Pro.

I am using three different test images – a black-to-white ramp, a test pattern, and a demo video image. The ramp without correction will appear as a diagonal line (0-100 IRE) on the scope, which makes it easy to analyze what’s happening. The video image has definite shadow and highlight areas, which lets us see how these controls work in the real world. For example, if you want to brighten the area of the shot where the man is in the shadows, but don’t want to make the highlights any brighter, this would normally be done using a Midtones control. Be aware that these various tools certainly aren’t calibrated the same way and some have a greater range of control than others. The weakest of these is FilmConvert’s wheels, since this plug-in has additional level controls in other parts of its interface.

Color science models

In the various forum threads, the argument is made that Apple is simply using a different color science method or a different weighing of some existing models. That’s certainly possible, since not all color correctors are built the same way. The most common approaches are Lift/Gamma/Gain and Shadows/Mids/Highlights. Be careful with naming. Just because something uses the terminology of Shadows, Midtones, and Highlights, does not mean that it also uses the SMH color science model. Many tools use the Lift/Gamma/Gain model, but in fact, call the controls shadows (Lift), mids (Gamma), and highlights (Gain). Another term you may run across is Set-up in some correction tools. This is typically used for control of shadows (equal to Lift), but can also function is an offset control that raises the level of the entire image. Avid Symphony employs this solution. Finally, both Symphony and Adobe SpeedGrade use what has been dubbed a 12-way color corrector. Each range is further subdivided into its own subset of shadows, mids, and highlights controls.

An LGG model provides broad control of shadows and highlights, with the midtones control working like a curve that covers the whole range, but with the largest effect in the middle. An SMH model normally divides the levels into three distinct, precisely overlapping ranges. This is much like a three-band audio equalizing filter. A number of the color correctors add a luma range control, which gives the user the ability to change how much of the image a specific range will affect. In other words, how broad is the control of the shadows, mids, or highlights control? This is like a Q control in an audio equalizer, where you change the shape of the envelope at a certain frequency.

Red Giant’s Magic Bullet Looks offers both color correction models with two different tools – the 4-way color corrector (SMH) and the Colorista color corrector (LGG). When you adjust the midrange control of their 4-way, the result is a graceful S-shaped curve to the levels on the waveform.

To study the effect of an LGG-based corrector, test the ramp. The shadows control (Lift) will raise or lower the dark areas of the image without changing the absolute highlights. The diagonal line of the ramp on the waveform essentially pivots, hinged at the 100 IRE point. Conversely, change the highlights control (Gain) pivots the line pinned to 0 IRE (at black). When you adjust the midtones control (Gamma), you create a curve to the line, which stays pinned at 0 and 100 IRE at either end. In this way you are effectively “expanding” or “compressing” the levels in the middle portion of your image without changing the position of your black or white points.

How the various color correction tools react

Looking at the luma control for the Midtones, two things are clear. First, all of these tools are using the LGG color science model. It’s not clear what the Color Wheels are using, but it isn’t SMH, as there is no bulge or S-curve visible in the scope. Second, the Color Wheels quickly drive the image levels into clipping, while the other tools generally keep black and while levels in place. In essence, the Midtones control affects the image more like a master or offset control would, than a typical mids or Gamma control. Yet, clearly Apple’s Color Board controls adhere to the standard LGG model. The concern, of course, is clipping. In the test image of the man walking on the village street, the sunlit building walls on the opposite side of the street will become overexposed and risk being clipped when the Color Wheels are used.

What about color? As a simple test, I next shifted the Midtones puck to the yellow. Bear in mind that the range of each of these controls is different, so you will see varying degrees of yellow intensity. Nevertheless, the way the control should work is that some pure black and white should be preserved at the top and bottom of the video levels. All of these tools maintain that, except for the Color Wheels. There, the entire image is yellow, effectively making the hue offset puck function more like a tint control.

One other issue to note, is that the Color Wheels offer an extraordinarily control range. The hue offset control RGB intensity values go from 0 (center of the wheel) to 1023. However, the puck icon can only go to the rim of the wheel, which it hits at about 200. With a mouse (or numerical entry), you can keep going well past the stop of the wheel icon – five times farther, in fact. The image not only becomes very yellow in this case, but you can easily lose the location of your control, since the GUI position in no longer relevant.

The working theory

The big question is why don’t the Color Wheels conform to established principles, when in fact, the Color Board controls do? Until there is some further clarification from Apple, one possible explanation is with HDR. FCPX 10.4 introduced High Dynamic Range (HDR) features. One of the various HDR standards is Rec. 2020 PQ. In that color space, the 0-100 IRE limitations of Rec. 709 are expanded to 0-10,000 nits. 0-100 nits is roughly the same brightness as we are used to with Rec. 709.

Looking at this image of the man walking along the street – where I’ve attempted to get a pleasing look with all of the tools – you’ll see that the Color Wheels in Rec. 709 don’t react correctly and will drive the highlights into a range to be clipped. However, in the bottom pane, which is the same image in Rec. 2020 PQ color space, the grade looks pretty normal. And, in practice, the Color Wheels controls work more or less the way I would have expected them to work. Yes, the same controls work differently in the different color spaces – properly in 2020 PQ and not in 709.

But why is that the case? I have no answer, but I do have a wild guess. Maybe, just maybe, the Color Wheels were designed for – or intended to only be used for – HDR work. Or maybe there’s conversion or recalibration of the controls that hasn’t taken place yet in this version. If the tool is only calibrated for HDR, then its range and weighing will be completely wrong for Rec. 709 video. If you increase the Midtones luma of the ramp in both Rec. 709 and Rec. 2020 PQ, you’ll see a similar curve. In fact, if you overlay a screen shot of each waveform, placing the full Rec. 709 scope image over the bottom portion of the Rec. 2020 PQ scale, you’ll notice that these sort of align up to about 100 IRE and nits. It’s as if one is simply a slice out of the other.

Regardless of why, this is something where I would hope Apple will provide a white paper or other demonstration of what the best practices will be for using this tool effectively. If it isn’t intentional, and actually is a mistake, then I presume a fix will be forthcoming. In either case, put in your feedback comments to Apple.

A word about HDR

Over the course of testing this tool and this theory, I’ve done a bit of testing with the HDR color spaces in FCPX. If you want to know more about HDR, I would encourage you to check out these contrary blog posts by Stu Maschwitz and Alexis Van Hurkman. I tend to side with Stu’s point-of-view and am not a big fan of HDR.

The way Apple has implemented these features in Final Cut Pro X 10.4 is to allow the user to set and override color spaces. If you set up your project to be Rec. 2020 PQ (and set preferences to “show HDR as raw values”), then the viewer and a/v output (direct from the Mac, not through a hardware i/o device) are effectively dimmed through the Mac’s color profile system. When you grade the image based on the 0-10,000 nits scale, you’ll end up seeing an image that looks pleasing and essentially the same as if you were working in Rec. 709. However – and I cannot over-emphasize this – you are not going to be able to produce an image that’s truly compatible with Dolby Vision and actually look correct as HDR, unless you have the correct AJA i/o hardware and a proper display. And by display, I mean a top-end Dolby, Canon, or Sony unit, costing tens of thousands of dollars.

As I understand the PQ specs, the bulk of the higher range is for the highlights that are normally constrained or clipped in our current video systems. However, that 10,000 nits scale is weighed, so that about 50% of the image value is in the first 100 nits, making it of comparable brightness to the current 100 IRE. The rest of that range is for brighter information, like specular highlights. You don’t necessarily get more brightness in the shadow detail. Therefore, if you are grading a shot in FCPX in a 2020 PQ color space and you only have the computer display to go by, you’ll grade by eye as much as by scope. This means that to get a pleasing image, you will end up making the average appearance of the image brighter than it really should be. When this is viewed on a real HDR monitor, it will be painfully bright. Having a higher-nits computer display, like on the iMac Pro (up to 500 nits), won’t make much difference, unless maybe, you crank the display brightness to its maximum (ouch!).  “Mine goes the 11!”

Right now, HDR is the wild, wild west. If you are smart, you’ll realize that you don’t know what you don’t know. While it’s nice to have these new features in FCPX, they can be very dangerous in the wrong hands.

But that’s another matter. Right now, I just hope Apple (or one of the usual suspects, like Ripple Training, LumaForge, or Larry Jordan) will come out with more elaboration on the Color Wheels.

©2018 Oliver Peters

Putting Apple’s iMac Pro Through the Paces

At the end of December, Apple made good on the release of the new iMac Pro and started selling and shipping the new workstations. While this could be characterized as a stop-gap effort until the next generation of Mac Pro is produced, that doesn’t detract from the usefulness and power of this design in its own right. After all, the iMac line is the direct descendant in spirit and design of the original Macintosh. Underneath the sexy, all-in-one, space grey enclosure, the iMac Pro offers serious workstation performance.

I work mostly these days with a production company that produces and posts commercials, corporate videos, and entertainment programming. Our editing set-up consists of seven workstations, plus an auxiliary machine connected to a common QNAP shared storage network. These edit stations consisted of a mix of old and new Mac Pros and iMacs (connected via 10GigE), with a Mac Mini for the auxiliary (1GigE). It was time to upgrade the oldest machines, which led us to consider the iMac Pros. The company picked up three of them – replacing two Mac Pro towers and an older iMac. The new configuration is a mix of three, one-year-old Retina 5K iMacs (late 2015 model), a 2013 “trash can” Mac Pro, and three 2017 iMac Pros.

There are plenty of videos and articles on the web about how these machines perform; but, the testers often use artificial benchmarks or only Final Cut Pro X. This shop has a mix of NLEs (Adobe, Apple, Avid, Blackmagic Design), but our primary tool is Adobe Premiere Pro CC 2018. This gave me a chance to compare how these machines stacked up against each other in the kind of work we actually do. This comparison isn’t truly apples-to-apples, since the specs of the three different products are somewhat different from each other. Nevertheless, I feel that it’s a valid real-world assessment of the iMac Pros in a typical, modern post environment.

Why buy iMac Pros at all?

The question to address is why should someone purchase these machines? Let me say right off the bat, that if your main focus is 3D animation or heavy compositing using After Effects or other applications – and speed and performance are the most important factor – then don’t buy an Apple computer. Period. There are plenty of examples of Dell and HP workstations, along with high-end gaming PCs, that outperform any of the Macs. This is largely due to the availability of advanced NVidia GPUs for the PC, which simply aren’t an option for current Macs.

On the other hand, if you need a machine that’s solid and robust across a wide range of postproduction tasks – and you prefer the Mac operating ecosystem – then the iMac Pros are a good choice. Yes, the machine is pricy and you can buy cheaper gaming PCs and DIY workstations, but if you stick to the name brands, like Dell and HP, then the iMac Pros are competitively priced. In our case, a shift to PC would have also meant changing out all of the machines and not just three – therefore, even more expensive.

Naturally, the next thing is to compare price against the current 5K iMacs and 2013 Mac Pros. Apple’s base configuration of the iMac Pro uses an 8-core 3.2GHz Xeon W CPU, 32GB RAM, 1TB SSD, and the Radeon Pro Vega 56 GPU (8GB memory) for $4,999. A comparably configured 2013 Mac Pro is $5,207 (with mouse and keyboard), but no display. Of course, it also has the dual D-700 GPUs. The 5K iMac in a similar configuration is $3,729. Note that we require 10GigE connectivity, which is built into the iMac Pros. Therefore, in a direct comparison, you would need to bump up the iMac and Mac Pro prices by about $500 for a Thunderbolt2-to-10GigE converter.

Comparing these numbers for similar machines, you’d spend more for the Mac Pro and less for the iMac. Yet, the iMac Pro uses newer processors and faster RAM, so it could be argued that it’s already better out of the gate in the base configuration than Apple’s former top-of-the-line product. It has more horsepower than the tricked-out iMac, so then it becomes a question of whether the cost difference is important to you for what you are getting.

Build quality

Needless to say, Apple has a focus on the quality and fit-and-finish of its products. The iMac Pro is no exception. Except for the space grey color, it looks like the regular 27” iMacs and just as nicely built. However, let me quibble a bit with a few things. First, the edges of the case and foot tend to be a bit sharp. It’s not a huge issue, but compared with an iPhone, iPad, or 2013 Mac Pro, the edges just not as smooth and rounded. Secondly, you get a wireless mouse and extended keyboard. Both have to be plugged in to charge. In the case of the mouse, the cable plugs in at the bottom, rendering it useless during charging. Truly a bad design. The wireless keyboard is the newer, flatter style, so you lose two USB ports that were on the previous plug-in extended keyboard. Personally, I prefer the features and feel of the previous keyboard, not to mention any scroll wheel mouse over the Magic Mouse. Of course, those are strictly items of personal taste.

With the iMac Pro, Apple is transitioning its workstations to Thunderbolt 3, using USB-C connectors. Previous Thunderbolt 2 ports have been problematic, because the cables easily disconnect. In fact, on our existing iMacs, it’s very easy to disconnect the Thunderbolt 2 cable that connects us to the shared storage network, simply by moving the iMac around to get to the ports on the back. The USB-C connectors feel more snug, so hopefully we will find that to be an improvement. If you need to get to the back of the iMac or iMac Pro frequently, in order to plug in drives, dongles, etc., then I would highly recommend one of the docks from CalDigit or OWC as a valuable accessory.

5K screen

Apple spends a lot of marketing hype on promoting their 5K Retina screens. The 27” screens have a raw pixel resolution of 5120×2880 pixels, but that’s not what you see in terms of image and user interface dimensions. To start with, the 5K iMacs and iMac Pros use the same screen resolution and the default display setting (middle scaled option) is 2560×1440 pixels. The top choice is 3200×1800. Of course, if you use that setting, everything becomes extremely small on screen.  Conversely, our 2013 Mac Pro is connected to a 27” Apple LED Cinema Display (non Retina). It’s top scaled resolution is also 2560×1440 pixels. Therefore, at the most useable settings, all of our workstations are set to the same resolution. Even if you scale the resolution up (images and UI get smaller), you are going to end up adjusting the size of the application interface and viewer window. While you might see different viewer size percentage numbers between the machines, the effective size on screen will be the same.

Retina is Apple’s marketing name for high pixel density. This is the equivalent of DPI (dots per inch) in print resolutions. According to a Macworld article, iPhones from 4 to 5s had a pixel density of 326ppi (pixels per inch), while iMacs have 218ppi. Apple converts a device’s display to Retina by doubling the horizontal and vertical pixel count. More pixels are applied to any given area on the screen, resulting in smoother text, smoother diagonal lines, and so on. That’s assuming an application’s interface is optimized for it. At the distance that the editors sit from a 27” display, there is simply little or no difference between the look of the 27” LED display and the 27” iMac Retina screens.

Upgradeability

Future-proofing and upgrades are the biggest negatives thrown at all-in-ones, particularly the iMac Pros. While the user can upgrade RAM in the standard iMacs, that’s not the case with iMac Pros. You can upgrade RAM in the future, but that must be done at a service facility, such as the Apple Store’s Genius service. This means that in three years, when you want the latest, greatest CPU, GPU, storage, etc., you won’t be able to swap out components. But is this really an issue? I’m sure Apple has user research numbers to justify their decisions. Plus, the thermal design of the iMac would make user upgrades difficult, unlike older mac Pro towers.

In my own experience on personal machines, as well as clients’ machines that I’ve helped maintain, I have upgraded storage, GPU cards, and RAM, but never the CPU. Although I do know others who have upgraded Xeon models on their Mac Pro towers. Part of the dichotomy is buying what you can afford now and upgrading later, versus stretching a bit up front and then not needing to upgrade later. My gut feeling is that Apple is pushing the latter approach.

If I tally up the cost of the upgrades that I’ve made after about three years, I would already be part of the way towards a newer, better machine anyway. Plus, if you are cutting HD and even 4K today, then just about any advanced machine will do the trick, making it less likely that you’ll need to do that upgrade within the foreseeable life of the machine. An argument can be made for either approach, but I really think that the vast majority of users – even professional users – never actually upgrade any of the internal hardware from that of the configuration as originally purchased.

Performance testing

We ultimately purchased machines that were the 10-core bump-up from the base configuration, feeling that this is the sweet spot (and is currently available) within the iMac Pro product line.

The new machine specs within the facility now look like this:

2013 Mac Pro – 3GHz 8-core Xeon/64GB RAM/dual D-500 GPUs/1TB SSD (Sierra)

2015 iMac – 4GHz 4-core Core i7/32GB RAM/AMD R9/3TB Fusion drive (Sierra)

2017 iMac Pro – 3GHz 10-core Xeon W/64GB RAM/Radeon Vega 64/1TB SSD (High Sierra)

As you can see, the tech specs of the new iMac Pros more closely match the 2013 Mac Pro than the year-old 5K iMacs. Of course, it’s not a perfect match for optimal benchmark testing, but close enough for a good read on how well the iMac Pro delivers in a real working environment.

Test 1 – BruceX

The BruceX test uses a 5K Final Cut Pro X timeline made up only of built-in titles and generators. The timeline is then rendered out to a ProRes file. This tests the pure application without any media and codec variables. It’s a bit of an artificial test and only applicable to FCPX performance, but still useful. The faster the export time, the better. (I have bolded the best results.)

2013 Mac Pro – 26.8 sec.

2015 iMac – 28.3 sec.

2017 iMac Pro – 14.4 sec.

Test 2 – media encoding

In my next test, I took a 4½-minute-long 1080p ProRes file and rendered it to a 4K/UHD (3840×2160) H.264 (1-pass CBR 20Mbps) file. Not only was it being encoded, but also scaled up to 4K in this process. I rendered from and to the desktop, to eliminate any variables from the QNAP system. Finally, I conducted the test using both Adobe Media Encoder (using OpenCL processing) and Apple Compressor.

Two noteworthy issues. The Compressor test was surprisingly slow on the Mac Pro. (I actually ran the Compressor test twice, just to be certain about the slowness of the Mac Pro.) The AME version kicked in the fans on the iMac.

Adobe Media Encoder

2013 Mac Pro – 6:13 min.

2015 iMac – 7:14 min.

2017 iMac Pro – 4:48 min.

 Compressor

2013 Mac Pro – 11:02 min.

2015 iMac – 2:20 min.

2017 iMac Pro – 2:19 min.

 Test 3 – editing timeline playback – multi-layered sequence

This was a difficult test designed to break during unrendered playback. The 40-second 1080p/23.98 sequence include six layers of resized 4K source media.

Layer 1 – DJI clips with dissolves between the clips

Layers 2-5 – 2D PIP ARRI Alexa clips (no LUTs); layer 5 had a Gaussian blur effect added

Layer 6 – native REDCODE RAW with minor color correction

The sequence was created in both Final Cut Pro X and Premiere Pro. Playback was tested with the media located on the QNAP volumes, as well as from the desktop (this should provide the best possible playback).

Playing back this sequence in Final Cut Pro X from the QNAP resulted is the video output largely choking on all of the machines. Playing it back in Premiere Pro from the QNAP was slightly better than in FCPX, with the 2017 iMac Pro performing best of all. It played, but was still choppy.

When I tested playback from the desktop, all three machines performed reasonably well using both Final Cut Pro X (“best performance”) and Premiere Pro (“1/2 resolution”). There were some frames dropped, although the iMac Pro played back more smoothly than the other two. In fact, in Premiere Pro, I was able to set the sequence to “full resolution” and get visually smooth playback, although the indicator light still noted dropped frames. Typically, as each staggered layer kicked in, performance tended to hiccup.

Test 4 – editing timeline playback – single-layer sequence

 This was a simpler test using a standard workflow. The 30-second 1080p/23.98 sequence included three Alexa clips (no LUTs) with dissolves between the clips. Each source file was 4K/UHD and had a “punch-in” and reposition within the HD frame. Each also included a slight, basic color correction. Playback was tested in Final Cut Pro X and Premiere Pro, as well as from the QNAP system and the desktop. Quality settings were increased to “best quality” in FCPX and “full resolution” in Premiere Pro.

My complex timeline in Test 3 appeared to perform better in Premiere Pro. In Test 4, the edge was with Final Cut Pro X. No frames were dropped with any of the three machines playing back either from the QNAP or the desktop, when testing in FCPX. In Premiere Pro, the 2017 iMac Pro was solid in both situations. The 2015 iMac was mostly smooth at “full” and completely smooth at “1/2”. Unfortunately, the 2013 Mac Pro seemed to be the worst of the three, dropping frames even at “1/2 resolution” at each dissolve within the timeline.

Test 5 – timeline renders (multi-layered sequence)

In this test, I took the complex sequence from Test 3 and exported it to a ProRes master file. I used the QNAP-connected versions of the Premiere Pro and Final Cut Pro X timelines and rendered the exports to the desktop. In FCPX, I used its default Share function. In Premiere Pro, I queued the export to Adobe Media Encoder set to process in OpenCL. This was one of the few tests in which the 2013 Mac Pro put in a faster time, although the iMac Pro was very close.

Rendering to ProRes – Premiere Pro (via Adobe Media Encoder)

2013 Mac Pro – 1:29 min.

2015 iMac – 2:29 min.

2017 iMac Pro – 1:45 min.

Rendering to ProRes – Final Cut Pro X

2013 Mac Pro – 1:21 min.

2015 iMac – 2:29 min.

2017 iMac Pro – 1:22 min.

Test 6 – Adobe After Effects – rendering composition

My final test was to see how well the iMac Pro performed in rendering out compositions from After Effects. This was a 1080p/23.98 15-second composition. The bottom layer was a JPEG still with a Color Finesse correction. On top of that were five 1080p ProResLT video clips that had been slomo’ed to fill the composition length. Each was scaled, cropped, and repositioned. Each was beveled with a layer style and had a stylized effect added to it. The topmost layer was a camera layer with all other layers set to 3D, so the clips could be repositioned in z-space. Using the camera, I added a slight rotation/perspective change over the life of the composition.

Rendering to ProRes – After Effects

2013 Mac Pro – 2:37 min.

2015 iMac – 2:15 min.

2017 iMac Pro – 2:03 min.

Conclusion

After all of this testing, one is left with the answer “it depends”. The 2013 Mac Pro has two GPUs, but not every application takes advantage of that. Some apps tax all the available cores, so more, but slower, cores are better. Others go for the maximum speed on fewer cores. All things considered, the iMac Pro performed at the top of these three machines. It was either the best or close/equal to the best.

There is no way to really quantify actual editing playback performance and resolution by any numerical factor. However, it is interesting to look at the aggregate of the six tests that could be quantified. When you compare the cumulative totals of just the iMac Pro and the iMac, the Pro came out 48% faster. Compared to the 2013 Mac Pro, it was 85% faster. The iMac Pro’s performance against the totals of the slowest machines (either iMac or Mac Pro depending on the test), showed it being a whopping 113% faster – more than twice as fast. But it only bested the fastest set by 20%. Naturally, such comparisons are more curiosity than anything else. Some of these numbers will be meaningful and others won’t, depending on the apps used and a user’s storage situation.

I will say that installing these three machines was the easiest I’ve ever done, including connecting them to the 10GigE storage network. The majority of our apps come from Adobe Create Cloud, the Mac App Store, or FxFactory (for plug-ins). Except for a few other installers, there was largely no need to track down installers, activation information, etc. for a zillion small apps and plug-ins. This made it a breeze and is certainly part of the attraction of the Mac ecosystem. The iMac Pro’s all-in-one design limits the required peripherals, which also contributes to a faster installation. Naturally, I can’t tell anyone if this is the right machine for them, but so far, the investment does look like the correct choice for this shop’s needs.

(Updated 6/22/18)

Here are two additional impressions by working editors: Thomas Grove Carter and Ben Balser. Also a very comprehensive review from AppleInsider.

©2018 Oliver Peters