The FCP X – RED – Resolve Dance

df_fcpx-red-resolve_5

I recently worked on a short 10 minute teaser video for a potential longer film project. It was shot with a RED One camera, so it was a great test for the RED workflow and roundtrips using Apple Final Cut Pro 10.1.2/10.1.3 and DaVinci Resolve 11.

Starting the edit

As with any production, the first step is to properly back up and verify the data from the camera and sound cards. These files should go to redundant drives that are parked on the shelf for safe keeping. After this has been done, now you can copy the media to the editorial drives. In this case, I was using a LaCie RAID-5 array. Each day’s media was placed in a folder and divided into subfolders for RED, audio and other cameras, like a few 5D shots.

df_fcpx-red-resolve_4Since I was using FCP X and its RED and proxy workflows, I opted not to use REDCINE-X Pro as part of this process. In fact, the Mac Pro also didn’t have any RED Rocket accelerator card installed either, as I’ve seen conflicts with FCP X and RED transcodes when the RED Rocket card was installed. After the files were copied to the editorial drives, they were imported into an FCP X event, with media left in its original location. In the import setting, the option to transcode proxy media was enabled, which continues in the background while you start to work with the RED files directly. The camera files are 4K 16×9 .r3d files, so FCP X transcodes these to half-sized ProRes Proxy media.

df_fcpx-red-resolve_1Audio was recorded as double-system sound using a Sound Devices recorder. The audio files were 2-channel broadcast WAV files using slates for syncing. There was no in-camera audio and no common timecode. I was working with a couple of assistant editors, so I had them sync each clip manually. Instead of using FCP X’s synchronized clips, I had them alter each master clip using the “open in timeline” command. This lets you edit the audio directly to the video as a connected clip within the master clip. Once done, your master clip contains synced audio and video.  It functions just like a master clip with in-camera audio – almost (more on that later).df_fcpx-red-resolve_9

All synced clips were relabeled with a camera, scene and take designation, as well as adding this info to the camera, scene and take columns. Lastly, script notes were added to the notes column based on the script supervisor’s reports.

Transcodes

df_fcpx-red-resolve_6Since the post schedule wasn’t super-tight, I was able to let the transcodes finish overnight, as needed. Once this is done, you can switch FCP X to working with proxies and all the media will be there. The toggle between proxy and/or optimized-original media is seamless and FCP X takes care of properly changing all sizing information. For example, the project is 4K media in a 1080p timeline. FCP X’s spatial conform downscales the 4K media, but then when you toggle to proxy, it has to make the corresponding adjustments to media that is now half-sized. Likewise any blow-ups or reframing that you do also have to match in both modes.

df_fcpx-red-resolve_2The built-in proxy/optimized-original workflow provides you with offline/online editing phases right within the same system. Proxies for fast and efficient editing. Original or high-resolution transcodes for finishing. To keep the process fast and initially true to color decisions made on set, no adjustments were made to the RED files. FCP X does let you alter the camera raw color metadata from inside the application, but there’s no real reason to do this for offline editing files. That can be deferred until it’s time to do color correction. So during the edit, you see what the DoP shot as you view the RED files or the transcoded proxies.

df_fcpx-red-resolve_3We did hit one bad camera load. This might have been due to either a bad RED drive or possibly excessive humidity at that location. No matter what the reason, the result was a set of corrupt RED clips. We didn’t initially realize this in FCP X, and so, hit clips that caused frequent crashes. Once I narrowed it down to the load from that one location, I decided to delete these clips. For that group of shots, I used REDCINE-X Pro to transcode the files. I adjusted the color for a flatter, neutral profile (for later color correction) and transcoded full-resolution debayered 1080p ProRes 4444 files. We considered these as the new camera masters for those clips. Even there, REDCINE-X Pro crashed on a few of the clips, but I still had enough to make a scene out of it.

Editing

The first editing step is culling down the footage in FCP X. I do a first pass rejecting all bogus shots, like short clips of the floor, a bad slate, etc. Set the event browser to “hide rejected”. Next I review the footage based on script notes, looking at the “circle takes” first, plus picking a few alternates if I have a different opinion. I will mark these as Favorites. As I do this, I’ll select the whole take and not just a portion, since I want to see the whole take.

Once I start editing, I switch the event browser to “show favorites”. In the list view, I’ll sort the event by the scene column, which now gives me a quick roadmap of all possible good clips in the order of the script. During editing, I cut mainly using the primary storyline to build up the piece. This includes all overlapping audio, composites, titles and so on. Cutting proceeds until the picture is locked. Once I’m ready to move on to color correction, I export a project XML in the FCPXML format.

Resolve

df_fcpx-red-resolve_7I used the first release version (not beta) of DaVinci Resolve 11 Lite to do this grade. My intention was to roundtrip it back to FCP X and not to use Resolve as a finishing tool, since I had a number of keys and composites that were easier done in FCP X than Resolve. Furthermore, when I brought the project into Resolve, the picture was right, but all of the audio was bogus – wrong takes, wrong syncing, etc. I traced this down to my initial “open in timeline” syncing, which I’ll explaining in a bit. Anyway, my focus in Resolve was only grading and so audio wasn’t important for what I was doing. I simply disabled it.

Importing the FCPXML file into a fresh Resolve 11 project couldn’t have been easier. It instantly linked the RED, 5D and transcoded ProRes 4444 files and established an accurate timeline for my picture cut. All resizing was accurately translated. This means that in my FCP X timeline, when I blew up a shot to 120% (which is a blow-up of the 1080p image that was downscaled from the 4K source), Resolve knew to take the corresponding crop from the full 4K image to equal this framing of the shot without losing resolution.

The one video gotcha I hit was with the FCP X timeline layout. FCP X is one of the only NLEs that lets you place video BELOW what any other software would consider to be the V1 track – that’s the primary storyline. Some of my green screen composite shots were of a simulated newscast inserted on a TV set hanging on a wall in the primary scene. I decided to place the 5 or 6 layers that made up this composite underneath the primary storyline. All fine inside FCP X, however, in Resolve, it has to interpret the lowest video element as V1, thus shifting everything else up accordingly. As a result the, bulk of the video was on V6 or V7 and audio was equally shifted in the other direction. This results in a lot of vertical timeline scrolling, since Resolve’s smallest track height is still larger than most.

df_fcpx-red-resolve_8Resolve, of course, is a killer grading tool that handles RED media well. My grading approach is to balance out the RED shots in the first node. Resolve lets you adjust the camera raw metadata settings for each individual clip, if you need to. Then in node 2, I’ll do most of my primary grading. After that, I’ll add nodes for selective color adjustments, masks, vignettes and so on. Resolve’s playback settings can be adjusted to throttle back the debayer resolution on playback for closer-to-real-time performance with RED media. This is especially important, when you aren’t running the fastest drives, fastest GPU cards nor using a RED Rocket card.

To output the result, I switched over to Resolve’s Deliver tab and selected the FCP X easy set-up. Select handle length, browse for a target folder and run. Resolve is a very fast renderer, even with GPU-based RED debayering, so output wasn’t long for the 130 clips that made up this short. The resulting media was 1080p ProResHQ with an additional 3 seconds per clip on either side of the timeline cut – all with baked in color correction. The target folder also contains a new FCPXML that corresponds to the Resolve timeline with proper links to the new media files.

Roundtrip back into FCP X

Back in FCP X, I make sure I’ve turned off the import preference to transcode proxy media and that my toggle is set back to original/optimized media. Find the new FCPXML file from Resolve and import it. This will create a new event containing a new FCP X project (edited sequence), but with media linked to the Resolve render files. Audio is still an issue, for now.

There is one interesting picture glitch, which I believe is a bug in the FCPXML metadata. In the offline edit, using RED or proxy media, spatial conform is enabled and set to “fit”. That scales the 4K file to a 1080p timeline. In the sequence back from Resolve, I noticed the timeline still had yellow render bars. When I switched the spatial conform setting on a clip to “none”, the render bar over it went away, but the clip blew up much larger, as if it was trying to show a native 4K image at 1:1. Except, that this was now 1080 media and NOT 4K. Apparently this resizing metadata is incorrectly held in the FCPXML file and there doesn’t appear to be any way to correct this. The workaround is to simply let it render, which didn’t seem to hurt the image quality as far as I could tell.

Audio

Now to an explanation of the audio issue. FCP X master clips are NOT like any other master clips in other NLEs, including FCP 7. X’s master clips are simply containers for audio and video essence and, in that way, are not unlike compound clips. Therefore, you can edit, add and/or alter – even destructively – any material inside a master clip when you use the “open in timeline” function. You have to be careful. That appears to be the root of the XML translation issue and the audio. Of course, it all works fine WITHIN the closed FCP X environment!

Here’s the workaround. Start in FCP X. In the offline edited sequence (locked rough cut) and the sequence from Resolve, detach all audio. Delete audio from the Resolve sequence. Copy and paste the audio from the rough cut to the Resolve sequence. If you’ve done this correctly it will all be properly synced. Next, you have to get around the container issue in order to access the correct WAV files. This is done simply by highlighting the connected audio clip(s) and using the “break apart clip items” command. That’s the same command used to break apart compound clips into their component source clips. Now you’ll have the original WAV file audio and not the master clip from the camera.

df_fcpx-red-resolve_11At this stage I still encountered export issues. If your audio mixing engineer wants an OMF for an older Pro Tools unit, then you have to go through FCP 7 (via an Xto7 translation) to create the OMF file. I’ve done this tons of time before, but for whatever reason on this project, the result was not useable. An alternative approach is to use Resolve to convert the FCPXML into XML, which can then be imported into FCP 7. This worked for an accurate translation, except that the Resolve export altered all stereo and multi-channel audio tracks into a single mono track. Therefore, a Resolve translation was also a fail. At this point in time, I have to say that a proper OMF export from FCP X-edited material is no longer an option or at least unreliable at best.

df_fcpx-red-resolve_10This leaves you with two options. If your mixing engineer uses Apple Logic Pro X, then that appears to correctly import and convert the native FCPXML file. If your mixer uses Pro Tools (a more likely scenario) then newer versions will read AAF files. That’s the approach I took. To create an AAF, you have to export an FCPXML from the project file. Then using the X2Pro Audio Convert application, generate an AAF file with embedded and trimmed audio content. This goes to the mixer who in turn can ingest the file into Pro Tools.

Once the mix has been completed, the exported AIF or WAV file of the mix is imported into FCP X. Strip off all audio from the final version of the FCP X project and connect the clip of the final mix to the beginning of the timeline. Now you are done and ready to export deliverables.

For more on RED and FCP X workflows, check out this series of posts by Sam Mestman at MovieMaker.

Part 1   Part 2   Part 3

©2014 Oliver Peters

Advertisements