NLE Tips – Week 3

df_nle3_1_sm

The Avid  – Resolve Roundtrip Workflow

Avid Media Composer has always been regarded as the best offline editing tool and its heritage was built upon a strong offline-to-online workflow. The file-based world has complicated things and various camera formats have made life even more complex for editors. Many have become quite fond of using Blackmagic Design’s DaVinci Resolve as a great companion to Media Composer. It’s cross-platform and even the free version will do most of what you need. Here’s a step-by-step example of how you might use the combo. Relinking varies a bit, based on file metadata and might need to be modified for your particular circumstances. This workflow is great with ARRI ALEXA files and will most likely work well with other similar camera formats. (Click images for an expanded view.)

df_nle3_4_smCreating edit proxies files with Resolve – ALEXA files are usually Apple ProRes 4444 or ProRes HQ QuickTime files that have been recorded with a Log-C gamma profile. So, they are big files with a flat appearance. To start, launch Resolve, load the ProRes camera clips into the Media Pool (Media or Edit tab) and select/edit all of the full clips to a new timeline. In the Color tab, select “track” instead of “clip” and apply a single node. In that node, apply an ARRI Log-C-to-Rec709 LUT. Go to the Deliver tab and pick the Avid roundtrip Easy Set-up. Make sure “Individual Source Clips” is selected (not a single file), define a render location and df_nle3_3_smdecide whether or not to add a file name prefix or suffix (not required). Render using the DNxHD 36 codec choice.

Moving to Media Composer for the creative cut – When the render process has been completed, you’ll have a folder containing Avid MXF media and a corresponding AAF file. This media has the LUT “baked in” and has been rendered with the very lightweight df_nle3_5_smDNxHD 36 codec. Drag the AAF file out of this folder to another location. Now drag this complete folder into any of your Avid MediaFiles/MXF subfolders. Unless you’ve already added extra folders there, you will typically find one existing folder (with Avid’s default label of “1”) that contains MXF media. Change the label of the new folder (the one that you’ve just dragged in) to another number, such as “2”.df_nle3_2_sm

Launch Media Composer, create a new project, open the first bin and import the AAF file that was created by Resolve. This bin will become populated by the color corrected, DNxHD 36 files created by Resolve. Voila, you are ready to edit your Oscar-winner! Cut until the project is locked. When you are done and are ready to move to the online or finishing phase of the edit, export an AAF file from Media Composer. Select “AAF Edit Protocol” and “Link to” media in the AAF options.df_nle3_10_sm

df_nle3_7_smReturning to Resolve for the final grade – Launch Resolve and start a new project. Import the AAF file that you exported from Media Composer. You’ll end up with a timeline that matches your Avid cut and it will be linked to the DNxHD 36 media. You will want to relink the files back to the original camera media – the ProRes HQ or ProRes 4444 files. To do this, delete all the media in the Resolve Media Pool (Edit tab), which will make the timeline clips appear offline. df_nle3_12_smNow, navigate to the folder with the original camera files and bring those into the Media Pool. Your timeline clips will now be relinked to this original camera media. You’ll recognize this because the clips on the timeline will be back to their original, flat, Log-C appearance. In some instances, Resolve may see some files as duplicate and might possibly relink to the wrong file. In that case, you’ll see an error icon on the timeline clip. Click on it and Resolve will present a dialogue window with the possible alternate media options. Pick the correct one and the clip should then be linked to the right shot. Color correct your timeline with the desired grade and any reframing.

df_nle3_6_smReturning to Media Composer to complete the edit – When you’ve completed the color grading, go to the Deliver tab and pick the Avid roundtrip Easy Set-up again, but this time pick a higher-quality codec (like DNxHD 175x). Make sure to set handle lengths (usually 2-5 sec.) and render (as “Individual Source Clips” again). The result will be a new folder of rendered MXF media with the “baked in” grade, plus a new corresponding AAF file. As before, drag out this AAF file and drag the folder of rendered media into the Avid MediaFiles/MXF subfolder. Relabel the folder of this new Resolve media with a different number (such as “3”).

df_nle3_11_smLaunch Media Composer, open your existing project and create a new bin. Import the new AAF file, which will now populate this bin with the high-quality media. This bin will also include the sequence that you sent over to Resolve, but now linked to the high-resolution media files. In many cases, you would simply use this sequence for any final effects, titles and other adjustments.

df_nle3_8_smRelinking the sequence in Media Composer – If for some reason the sequence that was “round-tripped” does not correctly reflect the edited cut as built in the offline stage, then you will need to relink a copy of that sequence to the new media. To do so, duplicate the sequence from your DNxHD 36 edit and move that copy into the bin with the 175x media. Close all other bins, except the 175x bin. Right-click the sequence and select “Relink” from the menu. Set your options to “Select Items In All Open Bins” and relink by “Timecode – Start” and “Source Name – Tape Name or Source File ID”. This will cause the sequence to be relinked to the new 175x final-quality media.df_nle3_9_sm

If everything worked correctly, you will have done a complete offline (creative cut) and online (finishing) workflow between Media Composer and Resolve, without the need for Avid’s traditional import or newer AMA processes!

©2014 Oliver Peters

Color Concepts and Terminology

df_clrterms_10_sm

It’s time to dive into some of the terms and concept that brought you modern color correction software. First of all – color grading versus color correction. Many use these terms to identify different processes, such as technical shot matching versus giving a shot a subjective “look”. I do this too, but the truth of the matter is that they are the same and are interchangeable. Grading tends to be a more European way of naming the process, but it is the same as color correction. (Click on any of the images in this article for an expanded and more descriptive view.)

All of our concepts stem from the film lab process known as color timing. Originally this described the person who knew how long to leave the negative in the chemical bath to achieve the desired result (the “timer”). Once the industry figured out to manipulate color in the negative-to-positive printing process, the “color timer” was the person who controlled the color analyzer and who dialed in degrees of density and red/blue/green coloration. The Dale Grahn Color iPad application will give you a good understanding of this process. Alexis Van Hurkman also covers it in his “Color Correction Handbook”.df_clrterms_09_sm

Electronic video color correction started with early color cameras and telecine (film-to-tape transfer or “film chain”) devices. These were based on red/blue/green color systems, where the video engineer (or “video shader”) would balance out the three components, along with exposure and black level (shadows). He or she would adjust the signal of the pick-up systems, including tubes, CCDs and photoelectric cells.

RCA added circuitry onto their cameras called a chroma proc, which divided the color spectrum according to the six divisions of the vectorscope – red, blue, green, cyan, magenta and yellow. The chroma proc let the operator shift the saturation and/or hue of each one of these six slices. For instance, you could desaturate the reds within the image. Early color correction modules for film-to-tape transfer systems adopted this same circuity. The “primary” controls manipulated the actual pick-up devices, while the “secondary” controls were downstream in the signal chain and let you further fine tune the color according to this simple, six-vector division.

df_clrterms_11_sm

Early color correction system were built to transfer color film to air or to videotape. They were part machine control and part color corrector. Modern color correction for post production came to be, because of these three key advances: memory storage, scene detection and signal decoding.

Memory storage. Once you could store and recall color correction settings, then it was easy to go back and forth between camera angles or shots and apply a different setting to each. Or you could create several looks and preview those for the client. The addition of this technology was the basis for a seminal patent lawsuit, known as the Rainbow patent suit, as the battle ranged over who first developed this technology.

Scene detection. Film transfer systems had to play in real-time to be recorded to videotape, which meant that shot changes had to trigger the change from one color correction setting to the next. Early systems did this via the operator manually marking an edit point (called “notching”), via an EDL (edit decision list) or through automatic scene detection circuitry. This was important for the real-time transfer of edited content, including film prints, cut negative and eventually videotape programs.

Signal decoding. The ability of color correction systems to decode a composite or component analog (and later digital) signal through added hardware, shifted color correction from camera shading and film transfer to being another general post production tool at a post facility. The addition of a signal decoder board in a DaVinci unit split the input signal into RGB parts and enabled the colorist to enhance the correction of an already-edited master using the “secondary” signal electronics of the system. This enabled “tape-to-tape” color correction of edited masters. Thanks to scene detection or an EDL, color correction could be shot-to-shot and frame-accurate, when played back in real-time for its re-encoded, corrected output back to a second videotape master.

Eventually the tools used in hardware-based, tape-to-tape color correction systems became standard. Quantel and Avid led the way by being first to incorporate these features into their nonlinear editing software.

_________________________________

Color correction software tends to break up its control into primary and secondary functions. As you can see from the earlier explanations, there’s really no reason to do that, since we are no longer controlling the pick-up devices within a camera or telecine. Nevertheless, it’s terminology we seem to be comfortable with. Often secondary controls enable masking and keys to isolate color – not because it has to be that way – but, because DaVinci added these features into their secondary control set. In modern correction tools, any function could happen on any layer, node, room, etc.df_clrterms_03_sm

The core language for color manipulation still boils down to the simple controls exemplified by the Dale Grahn app. A signal can be brighter, darker, more or less “dense” (contrast) and have its colorimetry shifted by added or subtracting red, blue or green for the overall image or in the highlight, midrange or shadow portions of the image. This basic approach can be controlled through sliders, knobs, color wheels and other user interfaces. Different software applications and plug-ins get to the same point through different means, so I’ll cover a few approaches here. Bear in mind, that since some of these actually represent somewhat different color science and math, examples that I present might not yield exactly the same results. Many controls are equivalent in their effect, though not necessarily identical in how they affect the image.

df_clrterms_01_smA common misconception is that shadow/mid/highlight controls on a 3-way color corrector will evenly divide the waveform into three discrete ranges. In fact, these are very large, overlapping ranges that interact with each other. If you shift a shadow luminance control up, it doesn’t typically just expand or compress the lower third of the waveform. Although some correctors act this way, most tend to shift the whole waveform up or down. If you change the color balance of the midrange, this color change will also affect shadows and highlights. The following is a quick explanation of some of the popular color control models.

Contrast/pivot/temperature/tint

df_clrterms_07_smContrast and temperature controls have recently become more popular and are considered a more photographic approach to correction. When you adjust contrast, the image levels expand or stretch as viewed on a waveform. Highlights get brighter and shadows deepen. This contrast expansion centers on a pivot point, which by default is at the center of the signal. If you change the pivot slider you are shifting the center point of this contrast expansion. In one direction, this means the contrast control will stretch the range below the pivot point more than above it. Shift the pivot slider in the other direction for the opposite effect.

df_clrterms_06_smColor temperature and tint (also called magenta) controls balance the red/blue/green signal channels in relationship to each other. If you slide a color temperature control while watching an RGB parade display on a waveform, you’ll note that adjustments shift the red and blue channels up or down in the opposite direction to each other, while leaving green unaffected. When you adjust the tint (or magenta) slider, you are adjusting the green channel. As you raise or lower the green, both the red and blue channels move together in a compensating direction.

Slope/offset/power

df_clrterms_08_smThe SOP model is used for CDL (color decision list) values and breaks down the signal according to luma (master), red, green and blue and are expressed in the form of plus or minus values for slope, offset and power. Scratch Play’s color adjustments are a good example of the SOP model in action. Slope is equivalent to gain. Picture the waveform as a diagonal line from dark to light. As you rotate this imaginary line, the higher part becomes taller, which represents brightness values. Think of the slope concept as this rotating line. As such, its results are comparable to a contrast control.

The offset control shifts the entire signal up or down, similar to other shadow or lift controls. The power control alters gamma. As you adjust power, the gamma signal is curved in a positive or negative direction, effectively making the midrange tones lighter or darker.

Lift/gamma/gain

df_clrterms_02_smThe LGG model is the common method used for most 3-way color wheel-style correctors. It effectively works in a similar manner to contrast and SOP, except that the placement of controls makes more sense to most casual users. Gain, as the name implies, increases the signal, effectively expanding the overall values and making highlights brighter. Lift shifts the entire signal higher or lower. Changing a lift control to darken shadows, will also have some effect on the overall image. Gamma bends the curve and effectively makes the midrange values lighter or darker.

Luma ranges

df_clrterms_04_smThe portions of the signal altered by highlight/shadow/midrange controls (like SOP, LGG or other) overlap. If you change the color balance for the midrange tones, you will also contaminate shadows and highlights with this color shift. The extent of the portion that is affected is controlled by a luma range control. Many color correction applications do not give you control over shifting the crossover points of these luma ranges. Some that do, include Avid Symphony, Synthetic Aperture Color Finesse and Adobe SpeedGrade. Each offers curves or sliders to reduce or expand the area controlled by each luma range and effectively tightens or widens the overlap or crossover between the ranges.

DaVinci Resolve includes a similar function within its log-style color wheels panel. It uses range adjustments that can limit the area affected by the balance and saturation controls. Similar results may be achieved by using HSL keyers or qualifiers that include softening controls.

Channels or printer lights

df_clrterms_05_smVideo signals are made up of red, blue and green channel information. It is not uncommon for properly-balanced digital cameras to still maintain a green color cast to the overall image, especially if log-profile recording was used. Here, it’s best to simply balance the overall channels first to neutralize the image, rather than attempt to do this through color wheel adjustments. Some software uses actual channel controls, so it’s easy to make a base-level adjustment to the output or mix of a channel. If your software uses printer lights, you can achieve the same results. Printer lights harken back to lab color timing, using point values that equate to color analysis values. Regardless, dialing in a plus or minus red/blue/green printer light value effectively gives you the same results as altering the output value of a specific color channel.

This is just a short post to go over some of the more confusing terminology found in modern color correction software. Many applications tend to blend the color science models, so as you apply the points mentioned to your favorite tool, you may see somewhat different results. Hopefully I’ve gotten you in the ballpark, in order to understand what happens when you twirl the knob the next time.

©2014 Oliver Peters

LUTs and FCP X

df_luts_01

LUTs or color look-up tables are a method of converting images from one color space or gamma profile into another. LUTs are usually a mathematically correct transform of one set of color and level values into another. For most editors and colorists, LUTs are commonly associated with log profiles that are increasingly used with various digital cameras, like an ARRI ALEXA, RED One, RED Epic or Blackmagic Design Cinema Camera. (Click on the images in this article for an expanded view.)

The concept gets confusing, because there are various types of LUTs and they can be inserted into different stages of the pipeline. There are display LUTs, used to convert the viewing color space, such as from Rec. 709 (video) into P3 (digital cinema projection). These can be installed into hardware conversion boxes, monitors and within software grading applications. There are camera LUTs, which are used to convert gamma profiles, such as from log-C to Rec. 709. And finally, there are creative LUTs used for aesthetic purposes, like film stock emulation.

df_luts_02One of the really sweet parts of Apple Final Cut Pro X is that it offers a vastly improved color pipeline that ties in closely to underpinnings of the OS, such as ColorSync. This offers developers opportunities over FCP “legacy” and quite frankly over many other competitors. Built into the code is the ability to recognize certain camera metadata if the camera manufacturer chooses to take advantage of Apple’s SDK. ARRI, Sony and RED are among those that have done so. For example, when you import ARRI ALEXA footage that was recorded with a log-C gamma profile, a metadata flag in the file toggles on log processing automatically within FCP X. Instead of seeing the flat log-C image, you see one that has already been converted, on-the-fly into Rec. 709 color space.

This built-in log processing comes with some caveats, though. The capability is only enabled with files recorded on ALEXA cameras with more recent firmware. It cannot be manually applied to older log-C footage, nor to any other log-encoded video file. It can only be toggled on or off without any adjustments. Finally, because this is done via under-the-hood ColorSync profile changes, it happens prior to the point any filters or color correction can be applied within FCP X itself.

df_luts_03A different approach has been developed by colorist Denver Riddle, known for his Color Grading Central website, products and tutorials. His new product, LUT Utility, is designed to provide FCP X editors with a better way of using LUTs for both corrective and creative color transforms. The plug-in installs into both Final Cut Pro X and Motion 5 and comes with a number of built-in LUTs for various cameras, such as the ALEXA, Blackmagic and even the Cinestyle profiles used with the Canon HDSLRs. Simply drop the filter onto a clip and select the LUT from the pulldown menu in the FCP X inspector pane. As a filter, you can freely apply any LUT selection, regardless of camera – plus, you can adjust the strength of the LUT via a slider. It can work within a series of filters applied to the same clip and can be placed upstream or downstream of any other filters, as well as within an adjustment layer (blank title effect). You can also stack multiple instances of the LUT with different settings on the same clip for creative effect.

df_luts_04The best part of LUT Utility is that you aren’t limited to the built-in LUTs. When you install the plug-in, a LUT Utility pane is added to System Preferences. In that pane, you can add additional LUTs sold by Color Grading Central or that you have created yourself. (External LUT files can be directly accessed within the filter when working in Motion 5.) One such package is the set of Osiris Digital Film Emulation LUTs developed jointly by Riddle and visionCOLOR. These are a set of nine film LUTs designed to mimic the looks of various film stocks. Each has two settings designed for either log or Rec. 709 video. For example, you can take an ALEXA log-C file and apply two instances of LUT Utility. Set the first filter to use the log-C-to-Rec.709 LUT. Then in the second filter, pick one of the film LUTs, but use the Rec. 709 version of it. Or, you could apply one instance of the LUT Utility filter and simply pick the same film LUT, but instead, select its log version. Both work, but will give you slightly different looks. Using the filter’s amount slider, it’s easy to fine tune the intensity of the effect.

df_luts_05LUT Utility is applied as a filter, which means you can still add other color correction filters before or after it. Applying a filter, like Hawaiki Color, prior to a log conversion LUT, means that you would be adjusting color values of the log image, before converting it into Rec. 709. If you add such a filter after the LUT, then you are grading the already-converted image. Each position will give you different results, but most of this is handled gracefully, thanks to FCP X’s floating-point processing. Finally, you can also apply the LUT as a filter and then do additional corrections downstream of the filter by using the built-in Color Board tools.

I found these LUTs easy to install and use. They appear to be pretty lightweight in how they affect FCP X playback performance. I’m running a 2009 Mac Pro with a new Mavericks installation. I can apply one or more instances of the LUT Utility filter and my unrendered ProRes media plays in real-time. With the widespread use of log and log-style gamma profiles, this is one of the handiest filter sets to have if you are a heavy FCP X user. Not only are most of the common cameras covered, but the Osiris LUTs add a nice creative edge that you won’t find at this price point in competitive products. If you use FCP X for color correction and finishing, then it’s really an essential tool.

©2014 Oliver Peters

Photo phun II

Time to come back with a look at photography – just for the fun of it. Earlier this year I talked about using Pixelmator as an alternative to Photoshop. When I work with photos, I prefer to use Lightroom, Aperture and/or Photoshop (in that order). For extra effects, a touch of Tiffen Dfx, DFT Film Stocks or Magic Bullet Looks also gives you more pizzazz. While Pixelmator is pretty “lite” compared with Photoshop, it still gives most casual photographers more than enough control to enhance their images. Since it is based on Apple’s Core Image technology, it can also serendipitously take advantage of some of the FxFactory effects plug-ins.

Below is a set of images processed strictly with Pxelmator. I did use some of the FxFactory filters just because they were there, but understand that most of these effects also have native equivalents within Pixelmator. So, FxFactory filters are not an essential part in using Pixelemator as your image processing application. Click on any image below for a slideshow.

Merry Christmas and Happy Holidays! See you in the new year!

Hawaiki Color

df_hawaiki_1_sm

Color correction using graphical color wheels was introduced to the editing world in the Avid Symphony over a decade ago and adopted by nearly every NLE after that.  Final Cut Pro “legacy” had a two nice color correctors using the color wheel model, so adopters of Final Cut Pro X were disappointed to see the Color Board as the replacement. Although the additive/subtractive color math works about the same way to change tonality of lows, mids and highlights, many users still pine for wheels instead of pucks and sliders. A pair of developers (Tokyo Productions and Lawn Road) set out to rectify that situation with Hawaiki Color. It’s the color correction tool that many Final Cut Pro X editors wish Apple had built. (Click any images in this post for an enlarged view.)

Both developers offer several different types of grading filters, which all perform similar tasks. Each has its own twists, but only Hawaiki Color includes on-screen sliders and color wheel controls. Based on how Apple designed FCP X, developers simply cannot create custom interfaces within the Inspector effects panel. They are limited to sliders and a few extras. One of these extras is to the ability to tap into the Mac OS color pickers to use color swatches as tonal controls for low/mid/hi color balance. A number of grading filters use this method quite successfully.

If a developer wants to introduce more custom interface elements, then there are two routes – linking to a separate external application (Magic Bullet Looks, Digital Film Tools Film Stocks, Tiffen Dfx3, GenArts Sapphire Edge) – or placing an overlay onto the Viewer. Thanks to the latter option, a number of developers have created special overlays that become “heads up display” (HUD) controls for their plug-ins. To date, only Hawaiki Color and Yanobox Moods have used a HUD overlay to reproduce color wheels for grading.

df_hawaiki_2_smThe Hawaiki Color grading controls can be adjusted either from the Inspector effects pane or from the on-screen HUD controls placed over the main Viewer output. Set-ups, like a reference split screen, must be done from the Inspector. The grading controls are built into three of the four frame corners with low/mid/hi/global sliders for exposure, temperature and saturation. The sliders in the fourth corner let you adjust overall hue, contrast, sharpening and blur. At the center bottom of the frame are three color wheels (low/mid/hi) for balance offsets. Once the Hawaiki Color filter is applied to the desired clips in your timeline – and you have set the filter to be displayed in a window or full screen with overlaid controls – it becomes very easy to move from clip-to-clip in a very fast grading session.

df_hawaiki_3_smI ran a test using Philip Bloom’s Hiding Place short film, which he shot as part of his review of the Blackmagic Pocket Cinema Camera. He was gracious enough to offer an ungraded ProResHQ version for download, which is what I used as my test footage. The camera settings include a flat gamma profile (BMD Film), which is similar to RED’s RedLogFilm or ARRI’s Log-C and is ideal for grading. I edited this into an FCP X timeline, bladed the clip at all the cuts and then applied the Hawaiki Color filter to each segment.

df_hawaiki_4_smBy running my Viewer on the secondary screen, setting the filter to full screen with the interface controls overlaid and placing the FCP X scopes below, I ended up with a very nice color grading environment and workflow.  The unique aspect, compared to most other grading filters, is that all adjustments occur right on the image. This means your attention always stays on the image, without needing to shift between the Inspector and the Viewer or an external monitor. I did my grading using a single instance of the filter, but it is possible to stack more than one application of Hawaiki Color onto a clip or within adjustment layers. You can also use it in conjunction with any other filter. In fact, in my final version, I added just a touch of the FilmConvert Pro film emulsion filter, as well as an FCP X Color Board shape mask for a vignette effect.

df_hawaiki_5_smThere are a few things to be mindful of. Because of the limitations developers face in creating HUDs for an FCP X effect, Hawaiki Color includes a “commit grade” button, which turns off the on-screen interface. If you don’t “commit” the grade, then the interface is baked into your rendered file and/or your exported master. Like all third-party filters, Hawaiki Color does not have the same unrendered performance as FCP X’s own Color Board. There’s “secret sauce” that Apple uses, which developers are not privy to. Frankly, there isn’t a single third-party FCP X filter that performs as well as Apple’s built-in effects. Nevertheless, Hawaiki Color performed reasonably well in real-time and didn’t get sluggish until I stacked FilmConvert and a vignette on top of it.

df_hawaiki_6_smI ran into an issue with Bloom’s source file, which he exports at a cropped 1920 x 816 size for a 2.40:1 aspect ratio. FCP X will fit this into a 1920 x 1080 sequence with letterboxed black pad on the top and bottom. However, by doing this, I found out that it affected the HUD controls, once I added more filters. It also caused the color wheel controls to change possible in the frame, as they are locked to the source size. The solution to avoid such issues is to place the non-standard-sized clip into a 1080p sequence and then create a Compound Clip. Now edit your Compound Clip to a new sequence where you will apply the filters. None of this is an issue with Hawaiki Color or any other filter, but rather a function of working with non-standard (for video) frame sizes within an FCP X sequence.

df_hawaiki_7_smAs far as grading Hiding Place, my intent was to go for a slight retro look, like 1970s era film. The footage lent itself to that and with the BMD Film gamma profile was easy to grade. I stretched exposure/contrast, increased saturation and swung the hue offsets as follows – shadows towards green, midrange towards red/orange and highlights towards blue. The FilmConvert Pro filter was set to a Canon Mark II/Standard camera profile and the KD5207 Vis3 film stock selection. This is a preset that mimics a modern Kodak negative stock with relatively neutral color. I dialed it back to 30% of its color effect, but with grain at 100% (35mm size). The effect of this was to slightly change gamma and brightness and to add grain. Finally, the Color Board vignette darkens the edges of the frame.

Click here to see my version of Hiding Place graded using Hawaiki Color. In my clip, you’ll see the final result (first half), followed by a split screen output with the interface baked in. Although I’ve been a fan of the Color Board, I really like the results I got from Hawaiki Color. Control granularity is better than the Color Board and working the wheels is simply second nature. Absolutely a bargain if it fits your grading comfort zone!

©2013 Oliver Peters / Source images @2013 PhilipBloom.net