24p HD Restoration

df_24psdhd_6

There’s a lot of good film content that only lives on 4×3 SD 29.97 interlaced videotape masters. Certainly in many cases you can go back and retransfer the film to give it new life, but for many small filmmakers, the associated costs put that out of reach. In general, I’m referring to projects with $0 budgets. Is there a way to get an acceptable HD product from an old Digibeta master without breaking the bank? A recent project of mine would say, yes.

How we got here

I had a rather storied history with this film. It was originally shot on 35mm negative, framed for 1.85:1, with the intent to end up with a cut negative and release prints for theatrical distribution. It was being posted around 2001 at a facility where I worked and I was involved with some of the post production, although not the original edit. At the time, synced dailies were transferred to Beta-SP with burn-in data on the top and bottom of the frame for offline editing purposes. As was common practice back then, the 24fps film negative was transferred to the interlaced video standard of 29.97fps with added 2:3 pulldown – a process that duplicates additional fields from the film frames, such that 24 film frames evenly add up to 60 video fields in the NTSC world. This is loaded into an Avid, where – depending on the system – the redundant fields are removed, or the list that goes to the negative cutter compensates for the adjustments back to a frame-accurate 24fps film cut.

df_24psdhd_5For the purpose of festival screenings, the project file was loaded into our Avid Symphony and I conformed the film at uncompressed SD resolution from the Beta-SP dailies and handled color correction. I applied a mask to hide the burn-in and ended up with a letter-boxed sequence, which was then output to Digibeta for previews and sales pitches to potential distributors. The negative went off to the negative cutter, but for a variety of reasons, that cut was never fully completed. In the two years before a distribution deal was secured, additional minor video changes were made throughout the film to end up with a revised cut, which no longer matched the negative cut.

Ultimately the distribution deal that was struck was only for international video release and nothing theatrical, which meant that rather than finishing/revising the negative cut, the most cost-effective process was to deliver a clean video master. Except, that all video source material had burn-in and the distributor required a full-height 4×3 master. Therefore, letter-boxing was out. To meet the delivery requirements, the filmmaker would have to go back to the original negative and retransfer it in a 4×3 SD format and master that to Digital Betacam. Since the negative was only partially cut and additional shots were added or changed, I went through a process of supervising the color-corrected transfer of all required 35mm film footage. Then I rebuilt the new edit timeline largely by eye-matching the new, clean footage to the old sequence. Once done and synced with the mix, a Digibeta master was created and off it went for distribution.

What goes around comes around

After a few years in distribution, the filmmaker retrieved his master and rights to the film, with the hope of breathing a little life into it through self-distribution – DVDs, Blu-rays, Internet, etc. With the masters back in-hand, it was now a question of how best to create a new product. One thought was simply to letter-box the film (to be in the director’s desired aspect) and call it a day. Of course, that still wouldn’t be in HD, which is where I stepped back in to create a restored master that would work for HD distribution.

Obviously, if there was any budget to retransfer the film negative to HD and repeat the same conforming operation that I’d done a few years ago – except now in HD – that would have been preferable. Naturally, if you have some budget, that path will give you better results, so shop around. Unfortunately, while desktop tools for editors and color correction have become dirt-cheap in the intervening years, film-to-tape transfer and film scanning services have not – and these retain a high price tag. So if I was to create a new HD master, it had to be from the existing 4×3 NTSC interlaced Digibeta master as the starting point.

In my experience, I know that if you are going to blow-up SD to HD frame sizes, it’s best to start with a progressive and not interlaced source. That’s even more true when working with software, rather than hardware up-convertors, like Teranex. Step one was to reconstruct a correct 23.98p SD master from the 29.97i source. To do this, I captured the Digibeta master as a ProResHQ file.

Avid Media Composer to the rescue

df_24psdhd_2_sm

When you talk about software tools that are commonly available to most producers, then there are a number of applications that can correctly apply a “reverse telecine” process. There are, of course, hardware solutions from Snell and Teranex (Blackmagic Design) that do an excellent job, but I’m focusing on a DIY solution in this post. That involves deconstructing the 2:3 pulldown (also called “3:2 pulldown”) cadence of whole and split-field frames back into only whole frames, without any interlaced tearing (split-field frames). After Effects and Cinema Tools offer this feature, but they really only work well when the entire source clip is of a consistent and unbroken cadence. This film had been completed in NTSC 29.97 TV-land, so frequently at cuts, the cadence would change. In addition, there had been some digital noise reduction applied to the final master after the Avid output to tape, which further altered the cadence at some cuts. Therefore, to reconstruct the proper cadence, changes had to be made at every few cuts and, in some scenes, at every shot change. This meant slicing the master file at every required point and applying a different setting to each clip. The only software that I know of to effectively do this with is Avid Media Composer.

Start in Media Composer by creating a 29.97 NTSC 4×3 project for the original source. Import the film file there. Next, create a second 23.98 NTSC 4×3 project. Open the bin from the 29.97 project into the 23.98 project and edit the 29.97 film clip to a new 23.98 sequence. Media Composer will apply a default motion adapter to the clip (which is the entire film) in order to reconcile the 29.97 interlaced frame rate into a 23.98 progressive timeline.

Now comes the hard part. Open the Motion Effect Editor window and “promote” the effect to gain access to the advanced controls. Set the Type to “Both Fields”, Source to “Film with 2:3 Pulldown” and Output to “Progressive”. Although you can hit “Detect” and let Media Composer try to decide the right cadence, it will likely guess incorrectly on a complex file like this. Instead, under the 2:3 Pulldown tab, toggle through the cadence options until you only see whole frames when you step through the shot frame-by-frame. Move forward to the next shot(s) until you see the cadence change and you see split-field frames again. Split the video track (place an “add edit”) at that cut and step through the cadence choices again to find the right combination. Rinse and repeat for the whole film.

Due to the nature of the process, you might have a cut that itself occurs within a split-field frame. That’s usually because this was a cut in the negative and was transferred as a split-field video frame. In that situation, you will have to remove the entire frame across both audio and video. These tiny 1-frame adjustments throughout the film will slightly shorten the duration, but usually it’s not a big deal. However, the audio edit may or may not be noticeable. If it can’t simply be fixed by a short 2-frame dissolve, then usually it’s possible to shift the audio edit a little into a pause between words, where it will sound fine.

Once the entire film is done, export a new self-contained master file. Depending on codecs and options, this might require a mixdown within Avid, especially if AMA linking was used. That was the case for this project, because I started out in ProResHQ. After export, you’ll have a clean, reconstructed 23.98p 4×3 NTSC-sized (720×486) master file. Now for the blow-up to HD.

DaVinci Resolve

df_24psdhd_1_smThere are many applications and filters that can blow-up SD to HD footage, but often the results end up soft. I’ve found DaVinci Resolve to offer some of the cleanest resizing, along with very fast rendering for the final output. Resolve offers three scaling algorithms, with “Sharper” providing the crispest blow-up. The second issue is that since I wanted to restore the wider aspect, which is inherent in going from 4×3 to 16×9, this meant blowing up more than normal – enough to fit the image width and crop the top and bottom of the frame. Since Resolve has the editing tools to split clips at cuts, you have the option to change the vertical position of a frame using the tilt control. Plus, you can do this creatively on a shot-by-shot basis if you want to. This way you can optimize the shot to best fit into the 16×9 frame, rather than arbitrarily lopping off a preset amount from the top and bottom.

df_24psdhd_3_smYou actually have two options. The first is to blow up the film to a large 4×3 frame out of Resolve and then do the slicing and vertical reframing in yet another application, like FCP 7. That’s what I did originally with this project, because back then, the available version of Resolve did not offer what I felt were solid editing tools. Today, I would use the second option, which would be to do all of the reframing strictly within Resolve 11.

As always, there are some uncontrollable issues in this process. The original transfer of the film to Digibeta was done on a Rank Cintel Mark III, which is a telecine unit that used a CRT (literally an oscilloscope tube) as a light source. The images from these tubes get softer as they age and, therefore, they require periodic scheduled replacement. During the course of the transfer of the film, the lab replaced the tube, which resulted in a noticeable difference in crispness between shots done before and after the replacement. In the SD world, this didn’t appear to be a huge deal. Once I started blowing up that footage, however, it really made a difference. The crisper footage (after the tube replacement) held up to more of a blow-up than the earlier footage. In the end, I opted to only take the film to 720p (1280×720) rather than a full 1080p (1920×1080), just because I didn’t feel that the majority of the film held up well enough at 1080. Not just for the softness, but also in the level of film grain. Not ideal, but the best that can be expected under the circumstances. At 720p, it’s still quite good on Blu-ray, standard DVD or for HD over the web.

df_24psdhd_4_smTo finish the process, I dust-busted the film to fix places with obvious negative dirt (white specs in the frame) caused by the initial handling of the film negative. I used FCP X and CoreMelt’s SliceX to hide and cover negative dirt, but other options to do this include built in functions within Avid Media Composer. While 35mm film still holds a certain intangible visual charm – even in such a “manipulated” state – the process certainly makes you appreciate modern digital cameras like the ARRI ALEXA!

As an aside, I’ve done two other complete films this way, but in those cases, I was fortunate to work from 1080i masters, so no blow-up was required. One was a film transferred in its entirety from a low-contrast print, broken into reels. The second was assembled digitally and output to intermediate HDCAM-SR 23.98 masters for each reel. These were then assembled to a 1080i composite master. Aside from being in HD to start with, cadence changes only occurred at the edits between reels. This meant that it only required 5 or 6 cadence corrections to fix the entire film.

©2014 Oliver Peters

New NLE Color Features

df_mascliplut_2_sm

As someone who does color correction as often within an NLE as in a dedicated grading application, it’s nice to see that Apple and Adobe are not treating their color tools as an afterthought. (No snide Apple Color comments, please.) Both the Final Cut Pro 10.1.2 and Creative Cloud 2014 updates include new tools specifically designed to improve color correction. (Click the images below for an expanded view with additional explanation.)

Apple Final Cut Pro 10.1.2

df_mascliplut_3_sm

This FCP X update includes a new, built-in LUT (look-up table) feature designed to correct log-encoded camera files into Rec 709 color space. This type of LUT is camera-specific and FCP X now comes with preset LUTs for ARRI, Sony, Canon and Blackmagic Design cameras. This correction is applied as part of the media file’s color profile and, as such, takes affect before any filters or color correction is applied.

These LUTs can be enabled for master clips in the event, or after a clip has been edited to a sequence (FCP X project). The log processing can be applied to a single clip or a batch of clips in the event browser. Simply highlight one or more clips, open the inspector and choice the “settings” selection. In that pane, access the “log processing” pulldown menu and choose one of the camera options. This will now apply that camera LUT to all selected clips and will stay with a clip when it’s edited to the sequence. Individual clips in the sequence can later be enabled or disabled as needed. This LUT information does not pass though as part of an FCPXML roundtrip, such as sending a sequence to Resolve for color grading.

Although camera LUTs are specific to the color science used for each camera model’s type of log encoding, this doesn’t mean you can’t use a different LUT. Naturally some will be too extreme and not desirable. Some, however, are close and using a different LUT might give you a desirable creative result, somewhat like cross-processing in a film lab.

Adobe CC 2014 – Premiere Pro CC and SpeedGrade CC

df_mascliplut_1_sm

In this CC 2014 release, Adobe added master clip effects that travel back and forth between Premiere Pro CC and SpeedGrade CC via Direct Link. Master clip effects are relational, meaning that the color correction is applied to the master clip and, therefore, every instance of this clip that is edited to the sequence will have the same correction applied to it automatically. When you send the Premiere Pro CC sequence to SpeedGrade CC, you’ll see that the 2014 version now has two correction tabs: master clip and clip. If you want to apply a master clip effect, choose that tab and do your grade. If other sections of the same clip appear on the timeline, they have automatically been graded.

Of course, with a lot of run-and-gun footage, iris levels and lighting changes, so one setting might not work for the entire clip. In that case, you can add a second level of grading by tweaking the shot in the clip tab. Effectively you now have two levels of grading. Depending on the show, you can grade in the master clip tab, the clip tab or both. When the sequence goes back to Premiere Pro CC, SpeedGrade CC corrections are applied as Lumetri effects added to each sequence clip. Any master clip effects also “ripple back” to the master clip in the bin. This way, if you cut a new section from an already-graded master clip to that or any other sequence, color correction has already been applied to it.

In the example I created for the image above, the shot was graded as a master clip effect. Then I added more primary correction and a filter effect, by using the clip mode for the first time the clip appears in the sequence. This was used to create a cartoon look for that segment on the timeline. Compare the two versions of these shots – one with only a master clip effect (shots match) and the other with a separate clip effect added to the first (shots are different).

Since master clip effects apply globally to source clips within a project, editors should be careful about changing them or copy-and-pasting them, as you may inadvertently alter another sequence within the same project.

©2014 Oliver Peters

Amira Color Tool and your NLE

df_amiracolor_1I was recently alerted to the new Amira Color Tool by Michael Phillips’ 24p blog. This is a lightweight ARRI software application designed to create custom in-camera looks for the Amira camera. You do this by creating custom color look-up tables (LUT). The Amira Color Tool is available as a free download from the ARRI website (free registration required). Although the application is designed for the camera, you can also export looks in a variety of LUT file formats, which in turn, may be installed and applied to footage in a number of different editing and color correction applications. I tested this in both Apple Final Cut Pro X and Avid Media Composer | Software (v8) with good results.

The Amira Color Tool is designed to correct log-C encoded footage into a straight Rec709 offset or with a custom look. ARRI offers some very good instructions, white papers, sample looks and tutorials that cover the operation of this software. The signal flow is from the log-C image, to the Rec709 correction, and then to the CDL-based color correction. To my eye, the math appears to be floating point, because a Rec709 conversion that throws a shot into clipping, can be pulled back out of clipping in the look tab, using the CDL color correction tools. Therefore it is possible to use this tool for shots other than ARRI Amira or Alexa log-C footage, as long as it is sufficiently flat.

The CDL correction tools are based on slope, offset and power. In that model slope is equivalent to gain, offset to lift and power to gamma. In addition to color wheels, there’s a second video look parameters tab for hue intensities for the six main vectors (red, yellow, green, cyan, blue and magenta). The Amira Color Tool is Mac-only and opens both QuickTime and DPX files from the clips I tested. It worked successfully with clips shot on an Alexa (log-C), Blackmagic Cinema Camera (BMD Film profile), Sony F-3 (S-log) and Canon 1DC (4K Canon-log). Remember that the software is designed to correct flat, log-C images, so you probably don’t want to use this with images that were already encoded with vibrant Rec709 colors.

FCP X

df_amiracolor_4To use the Amira Color Tool, import your clip from the application’s file browser, set the look and export a 3D LUT in the appropriate format. I used the DaVinci Resolve setting, which creates a 3D LUT in a .cube format file. To get this into FCP X, you need to buy and install a LUT filter, like Color Grading Central’s LUT Utility. To install a new LUT there, open the LUT Utility pane in System Preferences, click the “+” symbol and navigate to where the file was saved.df_amiracolor_5_sm In FCP X, apply the LUT Utility to the clip as a filter. From the filter’s pulldown selection in the inspector, choose the new LUT that you’ve created and installed. One caveat is to be careful with ARRI files. Any files recorded with newer ARRI firmware are flagged for log-C and FCP X automatically corrects these to Rec709. Since you don’t want to double up on LUTs, make sure “log processing” is unchecked for those clips in the info tab of the inspector pane.

Media Composer

df_amiracolor_6_smTo use the custom LUTs in Media Composer, select “source settings” for the clip. Go to the color management tab and install the LUT. Now it will be available in the pull-down menu for color conversions. This color management change can be applied to a single clip or to a batch of clips within a bin.

In both cases, the source clips in FCP X and/or Media Composer will play in real-time with the custom look already applied.

df_amiracolor_2_sm

df_amiracolor_3_sm

©2014 Oliver Peters

SpeedGrade Looks

df_sglooks_1_sm

In a previous post, I discussed how to use Final Cut Pro X Color Board presets. For that post, I created a set of presets and made them available as a free download. That remains one of the most viewed blog posts I’ve written and literally thousands of readers have downloaded the presets. In this post, I’m doing much the same with Adobe SpeedGrade CC Looks.

Adobe SpeedGrade CC uses the Lumetri deep color engine and presets may be shared between Premiere Pro CC and SpeedGrade CC via the Direct Link protocol. Grades, LUTs and  presets applied in SpeedGrade are combined into a single Lumetri filter effect that gets applied to the clip in Premiere Pro. When SpeedGrade CC is installed, it includes a number of preset Look examples developed by Adobe and Looks Labs. These include stylized grades, film emulations and camera log conversions among others. When you work in SpeedGrade, it is possible to save user-created Looks, as well. These are a combination of any set of layers and grades that you have applied to a single clip. These may include color correction adjustments, but also LUTs and special visual effects filters. User files are saved as .look files with a corresponding .jpg thumbnail of the shot that the grade was originally applied to. These .look files are saved by SpeedGrade in a number of possible folder locations, so you have to be careful, as to which folder is open and selected when you save a file.

df_sglooks_2_smI have created a variety of custom Looks covering color treatments, effects, film styles and more. These Looks were built around an image I’ve used for many of my color correction blog posts, because it has a nice spectrum of colors. For example, it’s hard to set up a characteristic “orange & teal” look, when the image has no blues, greens or skin tones. To start, download the file from the link below and unzip the archive file. Inside, you’ll find a folder called “op_sgrades”. Let me point out that my testing and instructions are based on a Mac. I have not tested this on a Windows PC, so I am not sure where the proper default installation folder lives.

On a Mac, the supplied Looks styles (Lumetri and SpeedLooks) are inside the closed application bundle. To install this new folder, you need to open the SpeedGrade CC package contents (right-click the application icon and choose “show package contents”). This will expose the application’s Contents folder. From there, navigate to the MacOS subfolder and then the Look Examples subfolder. Drag the “op_sgrades” folder into the Look Examples folder. When you next open SpeedGrade CC, you will be able to access this new set of Looks in the Looks Management pane. On a PC, right-click the application program icon and select “open file location”. This will expose a set of files, including the Look Examples folder.

df_sglooks_4_sm

Another caveat to this procedure. What happens with the next Adobe update to SpeedGrade CC? I’m not sure what happens to any folders inside the application contents package during an update. It may be that you would have to install this custom folder into the Look Examples folder again after a SpeedGrade CC version update. We’ll see when the next SpeedGrade CC update happens.

Since each of these presets was built on the same log-encoded (flat) image, you will need to adjust the grade according to the image you apply it to. In all of these, the first Primary layer (bottom of the stack) will be the same and is used to neutralize the image. The sliders I adjusted include input saturation, pivot, contrast, temperature and magenta. Only the global settings were adjusted in this layer. You can tweak it, hide/disable it or replace it with a LUT adjustment instead. I have stayed away from camera LUTs, as a way of neutralizing the image, because these will drastically affect the other corrections in the stack – often in unpredictable ways.

If you look back at my FCP X Color Board Presets article, you may notice that those looks were more extreme. In this set, I stayed more subtle, but the presets will be more complex, since SpeedGrade CC permits built-in effects. Some of these may be slow to display and update. This is especially true of any that include blurs.

Click here to download a .zip archive file of the Looks presets.

Click on any image below for a slideshow of the various Looks.

©2014 Oliver Peters

Comparing Color, Resolve, SpeedGrade and Symphony

df_ccc_main_sm

It’s time to talk about color correctors. In this post, I’ll compare Color, Resolve, SpeedGrade and Symphony. These are the popular desktop color correction systems in use today. Certainly there are other options, like Filmlight’s Baselight Editions plug-in, as well as other NLEs with their own powerful color correction tools, including Autodesk Smoke and Quantel Rio. Some of these fall outside of the budget range of small shops or don’t really provide a correction workflow. For the sake of simplicity, in this post I’ll stick with the four I see the most.

df_ccc_sym_sm

Avid Technology Media Composer + Symphony

Although it started as a separate NLE product with dedicated hardware, today’s Symphony is really an add-on option to Media Composer. The main feature that differentiates Symphony from Media Composer in file-based workflows is an enhanced color correction toolset. Symphony used to be the “gold standard” for color correction within an NLE, combining controls “borrowed” from many other software and systems, like Photoshop, hardware proc amps and hardware versions of the DaVinci correctors. It was the first to use the color wheel control model for balance/hue offsets. A subset of the Symphony tools has been migrated into Media Composer. Basic correction features in Symphony include channel mixing, hue offsets (color balance), levels, curves and more.

Many perceive Symphony correction as a single level or layer of correction, but that’s not exactly true. Color correction occurs on two levels – segment and program track. Most of your correction is on individual clips and Symphony offers a relational grading system. This means you can apply grades based on single clips or all instances of a master clip, tape ID, camera, etc. All clips used from a common source can be automatically graded once the first instance of that clip is graded on the timeline. The program track grade allows the colorist to apply an additional layer of grading to a clip, a section of the timeline or the entire timeline. So, when the client asks for everything to be darker, a global adjustment can be made using the program track.

Symphony also offers secondary grading based on isolating colors via an HSL key and adjusting that range. Although Symphony doesn’t offer nodes or correction layers like other software, you can use Avid’s video track timeline hierarchy to add additional correction to blank tracks above those tracks containing the video clips. In this way you are using the tracks as de facto adjustment layers. The biggest weakness is the lack of built-in masking tools to create what is commonly referred to as “power windows” (a term originated by DaVinci). The workaround is to use Avid’s built-in Intraframe/Animatte effects tools to create masks. Then you can apply additional spot correction within the mask area. It takes a bit more work than other tools, but it’s definitely possible. Finally, many plug-in packages, like GenArts Sapphire, Boris Continuum Complete and Magic Bullet Looks include vignette filters that will work with Symphony.

The bottom line is that Symphony started it all, though by today’s standards is “long-in-the-tooth”. Nevertheless, the relational grading model – and the fact that you are working within the NLE and can freely move between color correction and editing/trimming – makes Symphony a fast unit to operate, especially in time-sensitive, long-form productions, like TV shows.

df_ccc_spgrd_sm

Adobe SpeedGrade CC

If you are current as a Creative Cloud subscriber, then you have access to the most recent version of Adobe Premiere Pro CC and SpeedGrade CC. With the updates introduced late last year, Adobe added Direct Link interaction between Premiere Pro and SpeedGrade. When you use Direct Link to send your Premiere Pro timeline to SpeedGrade, the actual Premiere Pro sequence becomes the SpeedGrade sequence. This means codec decoding, transitions and Premiere Pro effects are handled by Premiere Pro’s effects engine, even though you are working inside SpeedGrade. As such, a project created via Direct Link supports features and codecs that would not be possible within a standalone SpeedGrade project.

Another unique aspect is that native and third-party transitions and effects used in Premiere Pro are visible (though not adjustable) when you are working inside SpeedGrade. This is an important distinction, because other correction workflows that rely on roundtrips don’t include NLE-based filters. You can’t see how the correction will be affected by a filter used in the NLE timeline. Naturally, in the case of SpeedGrade, this only works if you are working on a machine with the same third-party filters installed. When you return to Premiere Pro from SpeedGrade, the color corrections on clips are collapsed into a Lumetri filter effect that is applied to the clip or adjustment layer within the Premiere Pro sequence. Essentially this Lumetri effect is similar to a LUT that encapsulates all of the grading layers applied in SpeedGrade into a single effect in Premiere Pro. This is possible because the two applications share the same color science. The result is a render-free workflow with the easy ability to go back-and-forth between Premiere Pro and SpeedGrade for changes and adjustments. Unlike a standard LUT, Lumetri filters can carry masks, keyframes and are 100% precise.

As a color corrector, SpeedGrade is designed with a layer-based interface, much like Photoshop. Layers can be primary (fullscreen), secondary (keys and masks) or filters. A healthy selection of effects filters and LUTs are included. The correction model splits the signal into what amounts to a 12-way color wheel arrangement. There are lift/gamma/gain controls for the overall image, as well as for each of the shadow, middle and highlight ranges. Controls can be configured as wheels or sliders, with additional sliders for contrast, pivot, temperature (red vs. blue bias), magenta (red/blue vs. green bias) and saturation. There are no curves controls.

Overall, I like the looks I get with SpeedGrade, but I find it lacking in some ways. There are definite plusses and minuses. I miss the curves. It currently does not work with Blackmagic Design hardware. Matrox, Bluefish and AJA are OK. It’s got a tracker, but I find both tracking and masking to be mediocre. The biggest workflow shortcoming is the lack of a temporary memory register feature. You can save a whole grade, which saves the entire stack of grading layers applied to a clip as a Lumetri filter. You can apply grades from earlier timeline clips quite simply and SpeedGrade lets you open multiple playheads for comparison/correction between multiple shots on the timeline. You can access the nine grades ahead and the nine grades beyond the current playhead position. You can also copy the grade from the clip below mouse position to the clip under the playhead by pressing the C key. What you cannot do is store a random set of grades or just a single layer in a temporary buffer and then apply it from that buffer somewhere else in the timeline. Adding these two items would greatly speed up the SpeedGrade workflow.

df_ccc_resolve_sm

Blackmagic Design DaVinci Resolve

The DaVinci name is legendary among color correction products, but that reputation was earned with its hardware products, like the DaVinci 2K. Resolve was the software-based product built around a Linux cluster. When Blackmagic bought the assets and technology of DaVinci, all of the legacy hardware products were dropped, in favor of concentrating on Resolve as the software that had the most life for the future. There are now four versions, including Resolve Lite (free), Resolve (paid – software only), Resolve with a Blackmagic control surface and Resolve for Linux. The first three work on Mac and PC. You may download the free Lite version from the Blackmagic website or Apple’s Mac App Store. The Lite version has nearly all of the power of the paid software, but with these limitations: noise reduction, stereoscopic tools and the ability to output at a resolution above UltraHD requires a paid version.

I’m writing this based on Resolve 10, which has rudimentary editing features. It is designed as a standalone color corrector that can be used for some editing. Blackmagic Design doubled-down on the editing side with Resolve 11 (shown at NAB 2014). When that’s finally released this summer, you’ll have a powerful NLE built into the application. The demos at NAB were certainly impressive. If that turns out to be the case, Resolve 11 would function as an Avid Symphony or Quantel Rio type of system. That means you could freely move between creative editing and color correction, simply by changing tabs in the interface. For now, Resolve 10 is mainly a color corrector, with some very good roundtrip and conforming support for other NLEs. Specifically there is very good support for Avid and FCP X workflows.

As a color corrector, Resolve offers the widest set of correction tools of any of these systems. In the work I’ve done, Resolve allows for more extreme grading and is more precise when trying to correct problem shots. I’ve done corrections with it that would have been impossible with any other tool. The correction controls include curves, wheels, primary sliders, channel mixers and more. Corrections are node-based and can be applied to clips or an entire track. Nodes can be applied in a serial or parallel fashion, with special splitter/combiner and layer mixing nodes. The latter includes Photoshop-style blend modes. Unlike SpeedGrade, you can store the value of a single node in a buffer (using the keyboard copy function) and then paste the value of just that node somewhere else. This makes it pretty fast when working up and down a timeline. Finally, the tracker is amazing.

A few things bother me about Resolve, in spite of its powerful toolset. The interface almost presents too many tools and it becomes very easy to lose track of what was done and where. There is no large viewer or fullscreen mode that doesn’t hide the node tree. This forces a lot of toggling between workspace configurations. If you have two displays, you cannot use the second display for anything other than the scopes and audio mixer. (This will change with Resolve 11.) Finally, you can only use Blackmagic Design hardware to view the video output on a grading monitor.

df_ccc_color_sm

Apple Color

Some of you are saying, “Why talk about that? It was killed off a few years ago! Who uses that anymore?” Yes, I know. What people so quickly forget, was that when the software was FinalTouch (before Apple’s purchase), it was very expensive and considered to be very innovative. Apple bought it, added some features and cleaned up some of the workflow. As part of Final Cut Studio, it set the standard for round-tripping with an NLE. Unfortunately for many Mac users, it retained its less glossy, “Unixy” interface and thus, didn’t really catch on for many editors. However, it still works just fine on the newest machines and OS versions and remains a fast, high-quality color corrector.

Nearly all of the long-form jobs I’ve done – including feature films and TV shows up to even a few months ago – have been done with Color. There are two reasons that I prefer it. The first is that most of these jobs were cut using FCP 7, so it’s still the most integrated software for these projects. More importantly, there are several key features that make it faster than SpeedGrade and Resolve for projects that fall within a standard range of grading. In other words, the in-camera look was good and there were no huge problem areas, plus the desired grade didn’t swing into extreme looks.

Color is designed with 10 levels of grading per clip – primary in, eight secondaries and primary out. Since secondaries can be fullscreen or a portion of the image qualified by an HSL key or mask, each secondary layer can actually have two corrections – inside and outside of the mask. In addition to these, there’s a ColorFX layer for node-based filter effects, which can also include color adjustments. In reality, the maximum number of corrections to a single clip could be up to 19. The primary corrections can include value changes for RGB lift/gamma/gain and saturation levels, as well a printer lights. On top of this are lift/gamma/gain color wheels and luma controls. Lastly there are curves. The secondaries include custom mask shapes and hue/sat/luma curves. There’s a tracker, too, but it’s not that great.

Where Color still shines for me is in workflow. Each layer is represented by a labelled bar on the timeline under the clip. This makes it easy to apply only a single secondary adjustment to other clips on the timeline simply by sliding the corresponding secondary bar from one timeline clip to one or more of the others. For example, I used Secondary 3 to qualify a person’s face and brighten it. I could then simply drag the bar for S3 that appears under the first clip on the timeline over to every other clip with the same person and similar set-up. All without selecting each of these clips prior to applying the adjustment.

Color works with all cards that work with Final Cut Pro, so there’s no AJA versus Blackmagic issue as mentioned above. Dual monitors work well. You can have scopes and the viewer (or a fullscreen viewer) on one display and the full control interface on the other. Realistically, Color works best with up to 2K video and one of the standard Apple codecs (uncompressed or ProRes work best). A lot of the footage I’ve graded with it was ProResHQ or ProRes 4444 that came native from an ARRI Alexa or transcoded from a C300, RED or a Canon 5D/7D. But I’ve also done a film that was all native EX rewrapped as .mov from a Sony camera and Color had no issues. Log-profile footage grades very nicely in Color, so Alexa ProRes 4444 encoded as Log-C forms a real sweet spot for Apple Color.

©2014 Oliver Peters

DaVinci Resolve 10

df_r10_1_sm

Last NAB, Blackmagic Design caused everyone to perk up when it touted Resolve 10 as an online editor. Once it was released, it became a bit more obvious that Resolve was still primarily a color corrector, but one that also added editing features. This latest update has been out for a number of months (including a lengthy public beta period) and gone through several updates. Resolve 10 was a free update for owners of previous versions. No short review can do this program justice, due to the depth of its toolset, but let’s take a quick dive into what it has to offer. (Click any image to enlarge.)

df_r10_10_smDaVinci Resolve 10 comes in several versions for Mac and Windows, including Resolve Lite (free), Resolve Software ($995) and Resolve ($29,995), which includes the custom Resolve control surface. There are also Linux configurations. All versions will only work with Blackmagic video devices for I/O and monitoring, but these are not required for operation. In addition to mouse, trackpad and tablet control, Tangent Devices (Wave, Elements), JL Cooper (Eclipse) and Avid Artist control panels may be used as lower cost alternatives to the Resolve control surface. The free Lite version is most likely the biggest software bang-for-the-buck in the industry, but you’ll need the paid version for blur and noise reduction, 3D stereoscopic work, support for more than two GPUs and output at sizes bigger that UltraHD.

New in Resolve 10

df_r10_2_smSince Resolve 10 was a pretty thorough overhaul of the Resolve 9 interface, there’s a lot new in terms of minor changes throughout the application. Many functions are more streamlined and logical and will make more sense to the new user. Editing is the biggest new addition and most of the typical functions are there, including various edit modes, tracks, effects, titles, speed changes, transitions and audio. Although I really can’t envision starting any edit from scratch in Resolve 10, it’s easier than ever to make editorial changes when the client has last minute adjustments in mind. The point is that this can now be achieved in the grading session, without having to go back into an edit bay.

df_r10_9_smA big addition is the integration of an effects architecture, using the OpenFX plug-in format. Various developers are tweaking their OpenFX filters for compatibility with Resolve 10, but already I’ve been able to test the FilmConvert film emulation plug-in. Filters are applied to clips or a complete track as a node, so there are no third-party transition effects. However, since Resolve can render the timeline as a single file or as individual source clips, this means that the rendered clips will also have the applied effects baked into the rendered media. The application of an OpenFX filter to a node will slow down render speeds.

Resolve 10 also gained the ability to create DCPs straight from the timeline for cinema masters. However this only preps the project settings and does not cover the licensing fees that you need for an actual DCP export.

Nodes

df_r10_6_smEvery color corrector takes a different approach for how to build up a series of color correction adjustments. Resolve uses nodes, which have become fairly sophisticated. Although, it’s not a true compositor’s node tree, it does start to approach that. Node types include serial, parallel, splitters, combiners and layer mixers. These let a colorist not only string together a series of adjustments (serial nodes), but also split and recombine a signal, and create parallel node paths that are combined for a final output. The layer mixer node includes composite modes, similar to those used in Photoshop. While a lot of Resolve demos got very deep into node trees that dissect every aspect of a shot, I tend to take a simpler approach, sticking to curves and lift/gamma/gain controls. Nevertheless, if you need that power, it’s there in Resolve 10.

Strengths

df_r10_4_smDaVinci Resolve 10 – even the free Lite version – represents an amazing level of versatility. For example, many editors and DITs use it to prep media for an edit. It’s super simple to apply LUTs to log-profile camera files and spit out edit-ready, adjusted source files. Resolve is one of the fastest renderers I’ve encountered and it handles cross-format conversions quite well. For example, it can render Avid-compliant MXF media, which is relatively uncommon. The scaling function is second to none. After Effects used to be my preferred tool for upscaling images, but I’ve found that Resolve is even better. Not only is the quality great, but you have control over the smoothness or crispness of the scaled image.

df_r10_5_smYou can’t talk about Resolve without mentioning the tracker. If you apply a “power window” to a portion of a shot (like a person’s face), you need to track the movement. The tracker in Resolve is a very fast, point-cloud style tracker. These tracks are almost always dead-on, so you never think twice about using the tracker. One the things I especially like about Resolve is the image quality and processing. It uses 32-bit floating math. Essentially this means that you can crank up video in one node – even past the point of clipping – and then pull it back down (recovering detail without a clip) in the next node.

Weaknesses

User interfaces are a very subjective issue in color correction tools, just like they are for editing software. I find this to be a weakness, because I work with a dual-display system. With Resolve you can’t place the viewer on the secondary monitor, like you can with Adobe SpeedGrade CC or Apple Color. You can place the video scopes and the new audio mixer there, but the viewer is locked to the primary screen. If you use the enhanced viewer mode, it hides the node tree. This tends to make operation awkward if you don’t have a control surface nor an external broadcast monitor.

df_r10_3_smThe depth of Resolve’s color correction toolkit is amazing, but it’s almost too much. For example, you have both wheels and sliders for primary control. That makes it very adaptive to different working styles, but it also makes it easy to lose track of which tool you used to make adjustments. Some things don’t make sense to me. For instance, the maximum saturation level isn’t all that large and if you really want a shot dripping with chroma, it takes several serial nodes to do that.

A personal peeve, since I use dual 20” screens, is that something broke between Resolve 9 and Resolve 10. The earliest version of Resolve on the Mac was optimized for 1920×1080 screens (or larger), but then this was subsequently corrected for smaller resolutions, like laptops and the 20” Apple Cinemas. Apparently this has reverted a little with the latest version. With Resolve 9, the interface opened and was correctly scaled for the 20” display. With Resolve 10, the interface opens with the right edge running off the screen. You have to click the green “plus” button (one of the top three buttons in every Mac OS X window) to resize the window to fit the display.

Roundtrips with your editor

df_r10_8_smDaVinci Resolve 10 has the broadest support for roundtrips of any color correction tool, translating XML (Final Cut Pro 7 and Premiere Pro), FCPXML (Final Cut Pro X), EDL and AAF (Avid) list formats. This is a bi-directional roundtrip, so you can import sequences from your NLE into Resolve 10, but then also export NLE-compatible lists that properly relink to the rendered media. When Final Cut Pro X version 10.1 was released, compatibility was broken, but that’s recently been fixed with the latest updates from each company. However, it’s still not quite perfect. I tried two very simple sequences of a few shots each. One sequence used 1920×1080 ProRes HQ files from a Blackmagic Cinema Camera. The other used native, camera raw files from a RED EPIC (various sizes and frame rates). Both sequences were cut in FCP X and the FCPXML from each imported without issue into Resolve 10.

df_r10_7_smGoing the other way, back into FCP X, did present some issues. Both of the new FCPXMLs that were imported into FCP X reported error messages, although the clips and sequences imported correctly. The 1920×1080 files from the BMCC were fine. The EPIC files, which had been resized in the original FCP X timeline, were all interpreted by FCP X as 1280×720, even though Resolve 10 had correctly rendered the media as 1920×1080. These same timelines imported fine into Premiere Pro using standard XMLs.

Final thoughts

DaVinci Resolve 10 is currently the most popular color correction tool, largely because of the free version. It is powerful, though at times I feel that the correction tends to be a little harsher than with other grading applications. The interface could stand to be even more streamlined. Nevertheless, I’ve done grades that required extensive correction, which would have been impossible to achieve in any other color correction application.

It’s an essential tool that functions like a “Swiss Army knife” and as such, you owe it to yourself to spend some time learning it. The manual, written by noted colorist and author Alexis Van Hurkman, is easy to follow. Training resources include online tutorials at Color Grading Central, Ripple Training, Tao of Color and Mixing Light.

Originally written for Digital Video magazine / Creative PlanetNetwork.

©2014 Oliver Peters

NLE Tips – Week 3

df_nle3_1_sm

The Avid  – Resolve Roundtrip Workflow

Avid Media Composer has always been regarded as the best offline editing tool and its heritage was built upon a strong offline-to-online workflow. The file-based world has complicated things and various camera formats have made life even more complex for editors. Many have become quite fond of using Blackmagic Design’s DaVinci Resolve as a great companion to Media Composer. It’s cross-platform and even the free version will do most of what you need. Here’s a step-by-step example of how you might use the combo. Relinking varies a bit, based on file metadata and might need to be modified for your particular circumstances. This workflow is great with ARRI ALEXA files and will most likely work well with other similar camera formats. (Click images for an expanded view.)

df_nle3_4_smCreating edit proxies files with Resolve – ALEXA files are usually Apple ProRes 4444 or ProRes HQ QuickTime files that have been recorded with a Log-C gamma profile. So, they are big files with a flat appearance. To start, launch Resolve, load the ProRes camera clips into the Media Pool (Media or Edit tab) and select/edit all of the full clips to a new timeline. In the Color tab, select “track” instead of “clip” and apply a single node. In that node, apply an ARRI Log-C-to-Rec709 LUT. Go to the Deliver tab and pick the Avid roundtrip Easy Set-up. Make sure “Individual Source Clips” is selected (not a single file), define a render location and df_nle3_3_smdecide whether or not to add a file name prefix or suffix (not required). Render using the DNxHD 36 codec choice.

Moving to Media Composer for the creative cut – When the render process has been completed, you’ll have a folder containing Avid MXF media and a corresponding AAF file. This media has the LUT “baked in” and has been rendered with the very lightweight df_nle3_5_smDNxHD 36 codec. Drag the AAF file out of this folder to another location. Now drag this complete folder into any of your Avid MediaFiles/MXF subfolders. Unless you’ve already added extra folders there, you will typically find one existing folder (with Avid’s default label of “1”) that contains MXF media. Change the label of the new folder (the one that you’ve just dragged in) to another number, such as “2”.df_nle3_2_sm

Launch Media Composer, create a new project, open the first bin and import the AAF file that was created by Resolve. This bin will become populated by the color corrected, DNxHD 36 files created by Resolve. Voila, you are ready to edit your Oscar-winner! Cut until the project is locked. When you are done and are ready to move to the online or finishing phase of the edit, export an AAF file from Media Composer. Select “AAF Edit Protocol” and “Link to” media in the AAF options.df_nle3_10_sm

df_nle3_7_smReturning to Resolve for the final grade – Launch Resolve and start a new project. Import the AAF file that you exported from Media Composer. You’ll end up with a timeline that matches your Avid cut and it will be linked to the DNxHD 36 media. You will want to relink the files back to the original camera media – the ProRes HQ or ProRes 4444 files. To do this, delete all the media in the Resolve Media Pool (Edit tab), which will make the timeline clips appear offline. df_nle3_12_smNow, navigate to the folder with the original camera files and bring those into the Media Pool. Your timeline clips will now be relinked to this original camera media. You’ll recognize this because the clips on the timeline will be back to their original, flat, Log-C appearance. In some instances, Resolve may see some files as duplicate and might possibly relink to the wrong file. In that case, you’ll see an error icon on the timeline clip. Click on it and Resolve will present a dialogue window with the possible alternate media options. Pick the correct one and the clip should then be linked to the right shot. Color correct your timeline with the desired grade and any reframing.

df_nle3_6_smReturning to Media Composer to complete the edit – When you’ve completed the color grading, go to the Deliver tab and pick the Avid roundtrip Easy Set-up again, but this time pick a higher-quality codec (like DNxHD 175x). Make sure to set handle lengths (usually 2-5 sec.) and render (as “Individual Source Clips” again). The result will be a new folder of rendered MXF media with the “baked in” grade, plus a new corresponding AAF file. As before, drag out this AAF file and drag the folder of rendered media into the Avid MediaFiles/MXF subfolder. Relabel the folder of this new Resolve media with a different number (such as “3”).

df_nle3_11_smLaunch Media Composer, open your existing project and create a new bin. Import the new AAF file, which will now populate this bin with the high-quality media. This bin will also include the sequence that you sent over to Resolve, but now linked to the high-resolution media files. In many cases, you would simply use this sequence for any final effects, titles and other adjustments.

df_nle3_8_smRelinking the sequence in Media Composer – If for some reason the sequence that was “round-tripped” does not correctly reflect the edited cut as built in the offline stage, then you will need to relink a copy of that sequence to the new media. To do so, duplicate the sequence from your DNxHD 36 edit and move that copy into the bin with the 175x media. Close all other bins, except the 175x bin. Right-click the sequence and select “Relink” from the menu. Set your options to “Select Items In All Open Bins” and relink by “Timecode – Start” and “Source Name – Tape Name or Source File ID”. This will cause the sequence to be relinked to the new 175x final-quality media.df_nle3_9_sm

If everything worked correctly, you will have done a complete offline (creative cut) and online (finishing) workflow between Media Composer and Resolve, without the need for Avid’s traditional import or newer AMA processes!

©2014 Oliver Peters